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Abstract. Plasma density gradient control of wake phase velocity and trapping threshold in a
laser wakefield accelerator produced electron bunches with absolute longitudinal and transverse
momentum spreads more than ten times lower than in previous experiments (0.17 and 0.02 MeV/c
FWHM, respectively) and with central momenta of 0.76± 0.02 MeV/c, stable over a week of
operation. Simulations validated against diagnostics show that use of such bunches as a wakefield
accelerator injector can produce stable beams with 0.2 MeV/c-class momentum spread at high
energies. Preservation of bunch momentum spread requires high simulation momentum accuracy,
and related self-trapped simulations showed that high order particle weight effectively suppresses
simulation momentum errors allowing design of low emittance stages.
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INTRODUCTION

Laser wakefield accelerators (LWFAs) [1] have demonstrated acceleration to GeV en-
ergies in a few cm [2], reducing accelerating distances by a thousandfold compared to
conventional technologies. The laser ponderomotive (radiation) pressure drives a plasma
density wave (wake), whose longitudinal field can "self-trap" and accelerate electrons
from the plasma [1, 3]. Recently, self trapped experiments produced bunches with few
MeV/c momentum spreads near 100 MeV/c by extending the laser propagation distance
using a guiding channel [4] or large spot size [5, 6]. Channel guided LWFAs subse-
quently produced bunches with∼ 20 MeV/c longitudinal and 2 MeV/c transverse mo-
mentum spread at 1 GeV and stable bunches at 500 MeV [2, 7] .

In self-trapped experiments, injection, acceleration, and guiding are interdependent,
limiting tunability. Beam quality was best when operating at the trapping thresh-
old [5, 6, 7, 8], and relatively stable operation [2, 7, 9] was only observed in a narrow
parameter window. The plasmas used had approximately constant density along the laser
propagation direction, so that the wake phase velocityvφ was∼ vg (the laser group ve-
locity [3]). Using lower plasma density increasesvg and hencevφ , allowing electrons to
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accelerate to higher energies while remaining in phase with the wake [5, 6, 2]. However
no self-trapping is observed for given laser parameters below a minimum density [5, 6, 2]
indicating the need for externally controlled injection.

Independent control over electron injection into the wake and of the accelerating
structure could increase bunch energy by allowing operation of the accelerator at lower
density, while also improving stability and quality by allowing independent tuning of
injection. This is important for many applications, which desire momentum spreads
below those of present experiments (1-20 MeV/c or few % longitudinal spread and∼0.2-
2 MeV/c transverse spread). The short plasma wave wavelength,λp =

√
πc2m/e2ne

typically∼ 10−100 µm, determines the size requirement for the injected bunch. Here
ne is the plasma density,e andm the electron mass and charge, andc the speed of light.
Experiments [10] have demonstrated controlled injection using the colliding laser pulse
method [11, 12, 13] showing that controlled injection allows tuning the electron bunch
energy by changing the injection location within the plasma, but further reduction in
momentum spread is still desired.

Plasma density gradients with density decreasing in the laser propagation direction
(downramps) have been proposed to control trapping. In such gradientsλp increases
with propagation, causing the wake fronts behind the laser to fall further behind as the
laser propagates which decreases the wake phase front velocityvφ [14, 15, 16, 17]. Use
of the gradient separates density (which controls resonance of the plasma wave with
laser pulse length [3]) from wake phase velocity, and controls wake phase velocity as a
function of propagation distance. The reducedvφ reduces the threshold for trapping by
reducing the velocity electrons must achieve to be trapped, and hence allows trapping at
lower densities than in uniform plasmas. Such tuning of the trapping threshold has been
shown to produce stable electron bunches with an order of magnitude lower absolute
momentum spread than other LWFA experiments [18]. The reduced phase velocity also
reduces the maximum energy gain however because dephasing occurs quickly. Hence for
stable high energy bunches a downramp region to control trapping should be followed
by a long uniform-density plasma for acceleration to high energy.

Here, we report that using plasma density gradient controlled trapping produced
bunches with an order of magnitude lower absolute momentum spread than previous ex-
periments, and show that the bunches were stable over a week of operation and hundreds
of shots. Electron bunches at momenta of 0.76 MeV/c and with 0.17 MeV/c FWHM mo-
mentum spread, 0.02MeV/c central momentum stability and transverse momentum, and
2 mrad (0.002 MeV/c) RMS pointing stability over hundreds of shots were produced
with hundreds of pC of charge. Simulations, validated in detail against experimental di-
agnostics, show these bunches can be used as an LWFA injector for stable low energy
spread bunches at high energy as needed for applications. High order particle weight is
shown to be important for PIC simulation of such low momentum spread bunches.

The experimental setup is displayed in Fig. 1, showing a pulse from the LOASIS
Ti:Sapphire laser [19] focused on the downstream edge of a thin slit gas jet oriented
transversely to the laser axis. The laser ionized the hydrogen gas and drove a plasma
wake. Peak laser power was 10 TW (0.5 J in 47 fs FWHM), focused to a 7.5µm
FWHM spot. The plasma density profile in the laser propagation direction was mea-
sured to be Gaussian for densities above the interferometer measurement threshold of
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FIGURE 1. (color). Setup for density gradient controlled injection. The laser was focused at the
downstream edge of a thin slit gasjet where the density is decreasing. An interferometer measured the
plasma profile. Electron diagnostics include a magnetic spectrometer, bunch phosphor screen and ICT.

∼ 2× 1018 cm−3, with a peak density of 2.2±0.3× 1019 cm−3 and a FWHM of
750µm±100µm. The wake is excited strongly within a Rayleigh rangeZR∼ 200µm
of the laser focus [3], a small fraction of the jet length. This allowed effective selection
of the density gradient where the wake is excited, and hence control of trapping, using
laser focus location [18]. Focusing upstream of the jet center produced an increasing or
flat density, published previously [8], while focusing downstream produced a decreas-
ing density. Electron bunches were characterized by a magnetic spectrometer. The bunch
was bent 55o onto a phosphor screen (LANEX) imaged by a CCD, which imaged a mo-
mentum range of±14% about a central momentum determined by the magnet current.
Momentum resolution was±5%. Beam divergence was observed in the out-of-plane
direction. Alternatively, divergence and profile in both planes was observed by an in-
sertable bunch phosphor screen (BPS). Charge was determined by cross-correlating the
phosphor signals with an integrating current transformer (ICT). Transmitted laser mode
and THz bunch length measurements were presented in [18].

Focusing at the downstream edge of the jet, in the density downramp, produced
electron bunches with an order of magnitude lower absolute momentum spread and jitter
than previously observed in LWFAs [18] and multiple datasets on different run days
showed that accelerator operation was stable and repeatable over a week of operation.

FIGURE 2. (color). Sequential magnetic spectra with the laser focus in the density downramp, from
dataset A, display stable bunch performance (showing the 24 shots with the same magnet setting out of
the 45 shots in this sequence).
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FIGURE 3. (color). Sequential electron bunch profiles with the laser focus in the density downramp,
from dataset A. The black solid contour indicates the small-divergence feature (70% of peak). The +
indicates the centroid of this feature relative to the mean centroid over all shots (*). Images are plotted on
a fixed scale to show charge stability (showing 21 of the 31 shots in this sequence).

Magnetic spectrometer dataset A (Fig. 2) showed bunches with central momentum stable
at 0.76 MeV/c±0.02 MeV/c RMS and with momentum spread stable at 0.17 MeV/c
FWHM (20 %)± 0.02 MeV/c RMS over 28 sequential and 45 total diagnostic shots.
In the undispersed plane, the bunch divergence was 20 mrad FWHM± 1.8 mrad RMS,
and pointing deviation was 1.5 mrad RMS.

Bunch divergence in both planes (momentum integrated) was measured on the in-
sertable BPS phosphor (Fig. 3) [20]. A small-divergence bunch is visible surrounded by
a broad background. The small-divergence feature has a divergence of 26 (14) mrad in
the horizontal (vertical) plane with RMS deviations of±1.8 (2.5) mrad over 31 shots.
Bunch pointing showed 1.8 (1.2) mrad RMS and 8 (5) mrad peak-to-peak deviations in
the horizontal (vertical) plane. Deviations in pointing and divergence are much less than
the beam divergence. Vertical data agree with measurements from the magnetic spec-
trometer, indicating that the narrow feature is the MeV bunch. The broad background is
likely lower momentum electrons. The observed divergence indicates transverse bunch
momenta of∼ 0.02 MeV/c, much lower than the 0.3-2 MeV/c in conventional self-
trapped experiments [4, 2].

The signals on the magnetic spectrometer and the narrow divergence feature on the
BPS phosphor were correlated to ICT charge measurements to extract the charge of the
bunch at 0.76 MeV/c. This gaveQbunchof 0.3 - 1 nC. Charge stability was 40% RMS in
this dataset.

Central momentum was stable between 0.76 and 0.78 MeV/c, FWHM energy spread
between 0.16 and 0.19 MeV/c, and divergence between 17 to 23 mrad over three runs
and over a week of clock time. Figure 4 shows data from a second sequence of 82
shots (set B), measured 123 hours after Fig. 2, demonstrating this stability. This will be
important for LWFA applications and has not been previously observed. Charge stability
as good as 15 % RMS was observed. Variation in charge stability from run to run is likely
due to diurnal variation in laser stability and prepulse.

In the data presented in Figs. 2 and 4, a 10µm silver coated nitrocellulose pellicle
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FIGURE 4. (color). Sequential magnetic spectra with the laser focus in the density downramp from run
B, 123 hours after run A (showing 30 shots with the same magnet setting out of 82 shots in the sequence).

transmitted the electron bunch and diverted the laser to a mode imager CCD [21] to
measure the laser profile at the plasma exit [18]. A third set of 60 shots (dataset C) taken
immediately subsequent to that shown in Fig. 4 and with the mode imager pellicle re-
moved, is displayed in Fig. 5. Visible is a reduction in FWHM divergence by 10−20%,
and appearance of a narrow divergence feature (6 mrad) at the 80% contour, indicat-
ing that scattering contributed modestly to beam divergence in the measurements, and
showing that there is a sub-population of electrons with lower divergence. Longitudinal
momentum spread was not affected.

PIC simulations using the VORPAL [22] framework showed that the ramp decreased
vφ as described in [14], producing MeV-class electron bunches without significant
plasma modulation of the laser. Simulated plasma density was 1.8× 1019 cm−3 with
a Gaussian profile of 900µm FWHM, close to the experimental parameters. Consistent
with experimental stability, simulations produced MeV-class bunches for laser powers of
8-10 TW and plasmas of 500-1000µm FWHM with densities of 1.8−2.2×1019 cm−3.
The laser focus was 600µm downstream of the plasma center, in the range that pro-
duced MeV bunches experimentally. Because laser focusing through the jet required a
large simulation domain of 400µm (240µm) in the longitudinal (transverse) direction,

FIGURE 5. (color). Sequential magnetic spectra with the laser focus in the density downramp, and with
the mode imager pellicle removed from the beam, from run C, the same day as run B (showing 21 shots
with the same magnet setting out of the 60 shots in this sequence).
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FIGURE 6. (color). Simulated wake and phase space. In the downramp, the structure of the wake (A)
shows that the laser (red) drives a plasma density wake whose period varies as a function of distance
behind the pulse (grey) in the downramp, trapping and accelerating electrons (yellow). Trapping of the
electrons is shown in phase space (B) at the location of (A), and this bunch subsequently dephases due to
the low wake velocity in the ramp, forming an ultrafast (<50 fs), narrow momentum spread bunch at an
energy of 1.5 MeV/c (C).

simulations were conducted in 2D with 12,000 (900) cells and using 5 particles/cell.
Tests indicated modulation of the laser pulse was a small effect, allowing the laser to be
launched 750µm into the ramp to keep the simulation domain size tractable. An elec-
tron bunch was trapped at a density of∼ 5×1017 cm−3, where the laser pulse length was
resonant withλp (Fig. 6). At this density no trapping occurs in a homogeneous plasma
because of highvφ , emphasizing the ramp’s effect. Particles were trapped and accel-
erated to∼ 1.5 MeV/c (Fig. 6) with an absolute momentum spread of< 0.2 MeV/c,
similar to the experimental observation. Relative momentum spread in simulations and
experiments was at the 10− 20% level, consistent with other simulations and experi-
ments far above trapping threshold [2]. These results have now been reproduced using
the VORPAL envelope model [23, 24], which is now being used to conduct larger scale
and 3D simulations to resolve remaining discrepancies with experiments.

The simulations observed beam transverse momentum of∼0.05 MeV/c, or divergence
of 30 mrad, comparable to experimental measurements of 20 mrad. Simulations demon-
strated that the low transverse momentum resulted because the low trapping threshold
produced by the downramp decreased the transverse wake fields at trapping. This is in
contrast to simulations and experiments in homogeneous plasmas, where strong trans-
verse wakefields have been shown to result in transverse wave breaking, imparting much
higher transverse momenta of 0.3-2 MeV/c to the bunch [25, 26]. The low transverse
bunch momentum reduces normalized emittance. Using the simulated bunch size of
∼10 µm long by 5µm diameter, we obtainεn ∼ 0.2− 0.4 π mm-mrad. In principle,
this data indicates that emittance can be further improved using sharper gradients to
further reduce the transverse field contributions.

The low phase velocity which stabilizes and controls trapping also causes rapid
dephasing of the electron bunch, setting the 1 MeV-class maximum energy observed,
and requiring injection of these bunches into a subsequent LWFA stage to achieve high
energy. Asλp lengthens in the downramp, the bunch expands to≥ 50 µm in dimension,
and this length has been benchmarked to THz radiation measurements [27]. Use of
the bunches as an injector therefore requires that the post-accelerating stage be directly
coupled to the downramp at the dephasing point, so that the bunch remains smaller than
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FIGURE 7. (color). Simulations merging density gradient injection to an accelerating channel at the
location where the electrons dephase in the downramp (C in fig. 6). A continuous wake is driven (A) across
the transition from the ramp into the channel (plasma wake density, grey) by the laser (red) accelerating
particles (yellow). Acceleration in the channel (B) produces 20 MeV bunches while preserving the 0.2
MeV/c momentum spread.

λp. Use of such a continuous plasma in turn requires that the laser be well transmitted
through the downramp to drive the wake for postacceleration. Experiments [27, 18] and
simulations (Fig. 6) show that this requirement is met. The transmitted laser mode was
similar to the vacuum mode, with no filamentation and with laser transmission of more
than 70% when the jet was preionized by an ’ignitor’ laser pulse arriving before the drive
pulse (ignitor setup shown in [21]).

Simulations ending the downramp in a plasma channel with uniform axial density
immediately after the particles are trapped show that the bunch is accelerated to high
energy while preserving its low momentum spread (Fig. 7). Because the bunch is short
compared to the plasma wavelength, it sees a nearly even accelerating field and its
momentum spread is nearly preserved as it accelerates in the channel, producing 0.2
MeV/c class momentum spread at high energy. These simulations have so far shown
acceleration to beyond 20 MeV/c (limited by computational time) with 0.18 MeV/c
longitudinal and 0.15 MeV/c transverse momentum spread, corresponding to< 1%
energy spread and< 10 mrad divergence. Longer and 3D simulations using the envelope
model are in progress to optimize bunch quality. Related simulations [28, 29] indicate
that such post-acceleration nearly preserves absolute momentum spread, which may
enable bunches at GeV energies and beyond with < 0.1% energy spread.

Accurate modeling of bunch momentum spread is required to simulate and design
stages to post-accelerate low emittance bunches. Numerical work has shown that high
order spline weighting of particle currents and forces to the grid reduces momentum
errors [30]. The errors arise from discretization (of grid and macroparticles) and from
interpolation of forces from the grid, and can lead to momentum and orbit displace-
ments that introduce unphysical momentum spread. High order weight combined with
digital smoothing of current deposition also suppressed numerical heating which can
cause further error. The impact of these methods on bunch momentum spread accuracy
has been characterized by benchmarking runs conducted with various weighting and
smoothing functions to 2004 experiments producing 100 MeV self-trapped bunches [4],
and by convergence testing each method with resolution [31]. Use of third order particle
weighting and smoothing reduced unphysical growth of bunch transverse momentum
and divergence at least tenfold, greatly improving kinetic accuracy with only fraction-
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FIGURE 8. (color). The Px-Py (longitudinal vs. transverse momentum) phase space for two runs
modeling 100 MeV-class experiments. Using standard first order particle weighting (left), divergence
(Py/Px) is much greater than experiments, while using third order weighting with smoothing produced
divergence matching the experiment.

ally increased runtime. Grid particle loaders and accurate laser launchers were also used
to avoid seeding unphysical asymmetry. Simulated divergence in the axis orthogonal to
the laser polarization is∼ 4-6 mrad FWHM using these techniques, in good agreement
with the experimental observation of 3 mrad (Fig. 8, right). In contrast, improvement was
slow with increased resolution when using first order weighting, at a cost O[resolution4]
in 2D (O[resolution5] in 3D) for all spatial dimensions, time, and particles, emphasizing
the importance of these techniques. Dispersive properties were not noticeably changed.
These models are now being applied to design of low emittance stages.

In conclusion, experiments demonstrated that plasma gradient control of injection in
LWFAs produced bunches with 10- to 100- fold lower momentum spread and variation
than previous laser accelerators, and demonstrated day-to-day stability over a week of
run time. The bunches displayed central momentum stability of 0.76±0.02 MeV/c, mo-
mentum spread in the longitudinal (transverse) direction of 0.17 (0.02) MeV/c FWHM,
and pointing stability of 2 mrad or 0.002 MeV/c RMS. Charge stability between 15 and
45% RMS was observed, and normalized bunch emittance was inferred to be on the or-
der of 0.2−0.4π mm-mrad, a ten-fold improvement over previous LWFAs. Simulations
benchmarked to the experiments showed that by coupling these bunches to subsequent
LWFAs, their low absolute momentum spread was preserved as the bunch accelerated,
resulting in high energy beams with 0.2 MeV/c momentum spread and low emittance.
This may allow bunches at GeV energies and beyond with< 0.1% energy spread. Sim-
ulation techniques including high order particle weight were shown to suppress momen-
tum errors, allowing accurate modeling of post-acceleration stages to maintain the low
momentum spread and emittance generated to high energies. Together with the observed
stability over many run days, these properties will benefit many LWFA applications.
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