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Abstract. Ultrashort terahertz pulses with energies in the µJ range can be generated with laser
wakefield accelerators (LWFA), which are novel, compact accelerators that produce ultrashort
electron bunches with energies up to 1 GeV [1] and energy spreads of a few-percent. Laser pulses
interacting with a plasma create accelerated electrons which upon exiting the plasma emit terahertz
pulses via transition radiation. Because these electron bunches are ultrashort (< 50 fs), they can
radiate coherently (coherent transition radiation – CTR) in a wide bandwidth ( 1 - 10 THz) yielding
high intensity terahertz pulses [2]. In addition to providing a non-invasive bunch-length

∼
diagnostic

[3] and thus feedback for the LWFA, these high peak power THz pulses are suitable for high field
(MV/cm) pump-probe experiments. Here we present energy-based measurements using a Golay cell
and an electro-optic technique which were used to characterize these THz pulses.
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THZ RADIATION FROM A LWFA

Experiments were conducted using a 10 TW Ti:sapphire laser system at the LOASIS fa-
cility, LBNL. An 800-nm laser pulse (> 40 fs, up to 0.5 J) is focused (w0 ' 6 µm) onto
Helium gas (ne∼ 4×1019 cm−3) from a supersonic nozzle [4]. A∼ 1 nC electron bunch,
generated by the laser-plasma interaction, propagates through the plasma-vacuum inter-
face, producing CTR (THz) pulses. A portion of the THz radiation (0.178 steradian)
is collected and collimated (Fig. 1) by an off-axis parabola (OAP2) and refocused by
another OAP (OAP3).

Theoretical analysis [2] of the generation of CTR by the electron bunch reveals a
strong dependence of the THz peak power on the bunch charge, plasma size, bunch
length and electron energy. Since each electron in the bunch emits independently, the
radiation only interferes constructively if the bunch is shorter than the emitted wave-
length. The bunch length (< 50 fs) thus sets the cut-off frequency of the THz spectrum
(typically 5−10 THz). Sensitivity to plasma size is caused by diffraction. If the source is
smaller than the diffraction limit, the THz energy will not couple efficiently to the prop-
agating mode, setting the cut-on frequency of the spectrum (0.1 – 0.2 THz). However,
bunch duration and plasma size are difficult to vary.

Alternatively, maximizing the radiated energy can be done by controlling the THz
mode quality and by optimizing the energy and the charge of the electron bunch via
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FIGURE 1. Setup for THz spatial profile measurement through E-O sampling in a GaP or ZnTe crystal,
using a 50 fs optical probe beam.

pre-pulse control for the driver beam. Pressure, gas jet longitudinal position and driver
beam compression can be scanned to optimize the LWFA performance. We next present
results on optical mode measurements (THz peak electric field optimization) and on the
study of three different techniques for pre-pulse control and their impact on the THz
pulse energy.

Control of the THz mode profile

CTR produced by a LWFA is characterized through measurement of its spatial beam
profile, temporal waveform and spectrum, and its total energy.

A two-dimensional (2D) electro-optic (E-O) diagnostic [5] was used to measure the
THz spatial profile (Fig. 1). A collimated, linearly polarized probe beam overlapped
with the focused THz pulse in an E-O active crystal (e.g. GaP or ZnTe 〈110〉). The high
amplitude, low frequency field of the THz acted as an electrical bias on the crystal,
inducing a localized birefringence. Also incident on the crystal was a collimated laser
probe beam (λ0 = 800 nm) that overfilled the THz spot at the crystal plane. The probe
polarization was rotated by the THz-induced birefringence and a camera read out the
THz spatial mode by looking at the light passing through a second crossed polarizer.
The THz imaging optics were motorized to allow ex-situ optimization of the focused
THz modes [6], and hence of the THz peak electric fields. THz mode profiles produced
were round and Gaussian with 1/e2 radius ' 0.52 mm, and had little or no observable
aberration.

708



-500 -400 -300 -200 -100 0 100
-2

0

2

4

6

8

10

12

Delay between igniter and driver [ps]

R
ad

ia
tio

n 
en

ha
nc

em
en

t f
ac

to
r

THz emission
Gamma radiation

-30 -20 -10 0 10 20 30 40 50
-0.5

0

0.5

1

1.5

2

2.5
Close up near zero-delay

FIGURE 2. THz and gamma radiation enhancement (defined as the ratio of signals with and without the
presence of igniter pulse) as a function of the arrival time of the igniter beam. Negative delay corresponds
to earlier arrival of the igniter pulse.

OPTIMIZING THE ELECTRON BUNCH PERFORMANCE VIA
PRE-PULSE CONTROL

We evaluated three different methods of pre-pulse control. In the first, we introduced a
second colinearly propagating laser pulse (“igniter” beam) to act as a controllable pre-
pulse with adjustable timing. In the second method, we adjusted the timing of a Pockels
cell to selectively attenuate laser energy arriving prior to the main pulse. In the last
method, we implemented a contrast improvement system based on the cross-polarized
wave (XPW) technique [7]. Enhancement factors > 5 have been achieved for the THz
pulse energy by implementing the XPW.

Controllable pre-pulse: igniter beam

By introducing a precursor (igniter) pulse with controllable timing, the plasma is pre-
ionized and a guiding structure is created. This effect enhances the operation of the
accelerator, producing greater charge, more energetic and shorter electron bunches [8, 9].
A bolometer was used to characterize effects of this technique on THz generation.

At small negative delays (igniter arriving just before driver), the igniter has a delete-
rious effect, diminishing THz radiation by ∼ 50%. One explanation is the diffraction of
the driver beam by the pre-plasma formed by the igniter [10]. For longer delays, more
than 200 ps before the driver beam, an enhancement appeared (Fig. 2) and peaking at
∼ 400 ps. This timescale is correct for hydrodynamic effects to play a role [11, 8], mak-
ing it reasonable to attribute the enhancement to guiding of the driver beam, resulting in
higher electron beam energy (confirmed by the increased level of gamma radiation) and
possibly shorter electron bunches (reducing space charge effects).
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FIGURE 3. Control of the THz signal by controlling the laser front end ejection (Pockels cell timing),
with and without additional igniter pulse. The top curve shows the decrease in laser energy as the Pockels
cell cuts into the main pulse.

Pre-pulse filtering: Pockels cell

An alternative approach is to filter out ASE (amplified spontaneous emission) and
pre-pulses by using a Pockels cell to attenuate laser energy arriving prior to the main
pulse. The Pockels cell switching happens on a nanosecond time-scale and the procedure
therefore represents a compromise between eliminating pre-pulses and cutting into the
main pulse (Fig. 3). The Pockels cell timing was scanned with and without an igniter
beam to find the optimum. With the igniter, we managed to enhance the THz energy by
a factor 5.

The results above show that laser pre-pulse control on a sub-nanosecond time scale
is critical to improve the performance of both LWFA and THz source. We therefore
implemented a laser contrast improvement system which is described in the next section.

Pre-pulse filtering: XPW

The cross-polarized wave (XPW) technique is based on cubic anisotropy induced by
intense laser pulses in nonlinear crystals with high third-order non-diagonal coefficients,
such as BaF2. The nonlinear crystal is placed in between two crossed polarizers. The po-
larization rotation is intensity dependent. Therefore, the main pulse is transmitted with
high efficiency through the analyzer. The smaller pre-pulses and pedestal do not create
enough induced anisotropy and hence are suppressed. This technique can achieve laser
pulse contrast up to 10−11 [12]. Before and after the implementation, contrast measure-
ment using a third-order cross-correlator device (“Sequoia” from Amplitude Technolo-
gies) was performed. A contrast enhancement Fig. 4(a) of 3 orders of magnitude was
achieved on the −0.75 ps pre-pulse and up to 4 orders on the other pre-pulses.
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FIGURE 4. Comparisons of (a) laser contrasts at interaction and (b) scans of electron bunch charge
vs. laser pulse compression done before the XPW upgrade and after the XPW implementation. On the
left side (a), the remaining pre-pulse and post-pulses are instrument artifacts. On the right side (b), the
pulse compression is expressed in terms of the relative separation of the compressor gratings. Optimum
compression is obtained at zero.

Effect of contrast enhancement on THz emission

A new set of experiments done with the contrast-enhanced laser show not only a
dramatic increase in the production of charge Fig. 4(b), THz, gammas and neutrons, but
also a dramatic decrease in shot-to-shot fluctuations of the radiated energy, from 100%
to 10%.

For the THz energy measurements we used a Golay cell which is much smaller than a
conventional bolometer, but 3−4 orders less sensitive. Its calibration (0.59 µJ/V) in the
THz band was done at the FELIX facility in the Netherlands [13]. Because saturation
occurs at 1.44 V, its full-scale detection limit is only 0.85 µJ.

THz energy was sufficient to strongly saturate the Golay cell. Thus, to recover the
energy the detector was moved 8.1 cm downstream of the THz focus until the signal
was reduced below saturation. The detector was then scanned transversely to recover the
radial distribution of the THz energy, and hence the total energy (assuming cylindrical
symmetry of the THz beam) which was calculated to be 8.2 µJ.

In a second technique, the Golay cell was placed at the THz focus, and a narrow
(0.9 mm) slit aperture was scanned across the THz beam at a plane 3.8 cm upstream of
focus. The resulting distribution of energy density was then integrated to yield the energy
in the whole beam, which was 5.1 µJ, close to the value deduced from the first technique.
It should be noted that the second technique employs no assumptions about the shape
of the beam profile, making it theoretically more accurate. In fact, theory predicts that
there will be strong chirping (i.e. variation in frequency) of the beam in the direction
perpendicular to that scanned; it is possible that the mode profile is not perfectly axis-
symmetric, accounting for some of the discrepancy in the two measurements.
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CONCLUSION

We have demonstrated the ability to generate THz pulses with > 5µJ of energy and to
focus them with good mode quality, resulting in ' 0.3 MV/cm peak electric field. We
have also examined the relevance of the pre-pulse dynamics on the performance of the
LWFA and on the generation of THz radiation. We find that the effect of the pre-pulse
is significant and that the use of laser contrast enhancement is crucial for achieving both
high energy and good stability.
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