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Abstract. Three-dimensional laser wakefield acceleration (LWFA) simulations have recently been
performed to benchmark the commonly used particle-in-cell (PIC) codes VORPAL, OSIRIS, and
QuickPIC. The simulations were run in parallel on over 100 processors, using parameters relevant
to LWFA with ultra-short Ti-Sapphire laser pulses propagating in hydrogen gas. Both first-order and
second-order particle shapes were employed. We present the results of this benchmarking exercise,
and show that accelerating gradients from full PIC agree for all values of ag and that full and reduced
PIC agree well for values of ag approaching 4.
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INTRODUCTION

VORPAL [1], OSIRIS [2], and QuickPIC [3] are well-established particle-in-cells
code used for simulating a variety of laser-plasma problems [4, 5, 6,7, 8,9, 10]. OSIRIS
and VORPAL are fully-explicit particle-in-cell (PIC) codes developed by groups at
UCLA/IST/USC and Tech-X Corporation, respectively. QuickPIC is a quasi-static
particle-in-cell code developed by UCLA/U. of Maryland/IST/USC. While these three
codes have been widely used throughout the plasma physics community, they have not
been benchmarked against each other in detail until now.

An early attempt at benchmarking OSIRIS and VORPAL was done at the 2004 Ad-
vanced Accelerator Concepts Workshop [11]. This benchmarking effort conducted 2D
laser wakefield acceleration simulations with both OSIRIS and VORPAL. The results
showed significant differences that were attributed to differing laser pulse profiles, differ-
ing pulse launch methods, varying plasma parameters, boundary conditions, and particle
loading methods. The conclusion of this brief study was that a more detailed benchmark-
ing effort should be done, addressing all of these differences with an eye to the details.

This article presents the efforts made by UCLA, IST, Tech-X Corporation, and LBNL
to address the significant differences found in the previous benchmarking effort, extend-
ing the comparison to include QuickPIC and with full 3D simulations. In the following
sections, we compare the three codes in a common laser wakefield acceleration (LWFA)
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TABLE 1. Laser and plasma parameters used in the laser wakefield acceleration benchmarking
simulations.

Normalized Vector Laser Laser Pulse Laser Pulse Plasma
Potential of Laser (a9) Wavelength (1y) Length (Ary) Width (W) Density (ng)

0.5, 1.0, 2.0, 4.0 0.8 um 15fs 8.2 um 1.38x 10" em™3

TABLE 2. Grid and simulations parameters used by the explicit PIC codes, VORPAL and OSIRIS,
in the laser wakefield acceleration benchmarking simulations.

Transverse Grid Size Transverse Time
Box Size  Longitudinal in Cells Cell Size  Longitudinal Step Number of
(Square) Box Size (Cubed) (Square) Cell Size Size  Time Steps

81.52 um 20.5 um 5123 0.16 um 0.04 um  0.1fs 1600

scenario. The next section describes the benchmarking parameters in a case relevant to
LWFA with Ti-Sapphire lasers propagating in hydrogen gas. The following section de-
tails comparisons of the laser and wake fields in the plasma, showing very good agree-
ment between the three codes.

BENCHMARKING PARAMETERS

Table 1 shows the laser and plasma parameters used in the benchmarking simulations.
Four different laser strengths are considered, ag = 0.5,1.0,2.0,4.0, scanning over the
range from weakly to moderately non-linear dynamics. Planned experiments at LBNL
will operate well within this range of laser intensities. The longitudinal and transverse
profile of the laser is the same as given in [7], which uses a polynomial longitudinal
profile that smoothly goes to zero in a finite distance.

Table 2 shows the grid and simulation parameters used by the explicit PIC codes,
VORPAL and OSIRIS. QuickPIC uses the same transverse cell size and transverse
box size, but the longitudinal cell size is increased to 1.07%, satisfying the % > 1
condition for stability. There are only two time steps in the QuickP IC simulation, each
with a length of 80 fs.

The laser pulse starts in vacuum, adjacent and about to enter a plasma region with no
density ramp. The laser pulse is allowed to travel for 160 fs into the plasma, or slightly
less than 50 um. This gives the laser pulse time to propagate a few plasma wavelengths,
far enough into the plasma for the wake to fully form behind the pulse.

All three codes use a moving window approach, where the simulation box moves at
the speed of light. However, since the speed of the pulse is slightly less than light speed,
the laser pulse will drift back very slightly in the window after the 160 fs duration of
the simulation. Both QuickPIC and OSIRIS initialize the pulse near the edge of the
simulation domain, the edge toward which the pulse is propagating, and the moving
window starts with the first time step of the simulation. VORPAL, however, launches
its pulse from a surface using time-dependent boundary conditions with the moving
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window turned off. When the VORPAL laser pulse reaches the far edge of the domain,
the moving window turns on. Once the moving window engages—in all three codes—
plasma begins sweeping into the domain. In QuickP IC, the plasma sweeps by the laser
under the quasi-static approximation.

First-order particle shapes (i.e., linear field interpolation and current deposition) were
used for simulations with @y = 0.5, 1,2,4 in the explicit PIC codes. QuickPIC deposits
the current and charge, and hence its particle shapes are one order higher than those in the
local charge conserving schemes used in VORPAL and OSTRISA 4-pass 1-2-1 digital
filter, with 1 pass of compensation, was used to smooth all of the current components
along the longitudinal direction. Additionally, second-order particles shapes were used
for ag = 1,2,4 in the explicit PIC codes. No smoothing was done with the second-order
particle shapes. All of these simulation used 8 particles per cell.

No attempt was made to exactly match the phase of the laser pulse in the explicit PIC
codes. Since the wake is formed from the ponderomotive force, it is reasonable to assume
that the phase of the laser pulse will have little effect on the shape of the wake behind
the pulse. This fact—as well as the fundamental differences between the three codes in
launching the laser pulse and setting up the simulation domain and grid—makes precise
positioning of the laser pulse in the simulation domain at the end of the simulation
difficult. Hence, we assume that there is an unknown longitudinal offset between the
data produced by the three codes, which we correct for in the resulting comparison
plots.

RESULTS

To compare the codes, we look at the electric fields in the direction of the laser pulse
polarization and in the direction of the pulse propagation, which is a part of the wake
produced by the laser pulse. These components we refer to as the laser field and the
wake field, respectively. We then directly compare 1D line-outs of the fields down the
center of the simulation along the axis of propagation of the laser pulse. To determine
the unknown longitudinal offset, we aligned the profiles of the wake fields behind the
laser pulse in the lowest ag simulation, where we expect all three codes to agree very
well. This determines the longitudinal offset, which we apply to all of the rest of the data
in all of the simulations, ag = 0.5,1,2,4.

The explicit PIC codes interpolate fields directly from the Yee mesh when computing
the particle push. This is always done in OSIRIS. VORPAL normally interpolates the
nodal fields for the particle push, but VORPAL is capable of interpolating directly from
the Yee mesh, which is the option used in this exercise. Thus, the fields compared from
the full PIC cases are the fields from the Yee mesh, which are the same fields used to
compute the particle kinetics. QuickPIC is a spectral code so all fields are defined at
the nodes.

Figure 1 shows the 1D line-outs of the laser field and wake field for the ag = 2,4
cases after 1600 times steps (160 fs) from the moment the laser pulse strikes the edge of
the plasma. These results are with first-order particle shapes. The laser pulse plots are
only shown for the explicit PIC codes, OSIRIS and VORPAL. The slight differences
for QuickPIC at ay = 2 are believed to be the effects of boundary conditions with the

317



3 0.10

0.05/

43
L‘j § 0.00
—0.05
-3 - , - y —0.10 - - ‘ -
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Ty 2wy
C C
(a) (b)

020 40 60 80 100 120 140
LWo

0 20 40 60 80 100 120 140
c C

© (@

FIGURE 1. The electric field in the direction of laser polarization (left plots) and in the direction of

laser propagation, or wake field, (right plots) with first-order particle shapes. Figures (a) and (b) are for

ag = 2, and figures (c) and (d) are for ag = 4. OSIRIS data is shown with the solid lines. VORPAL data

is shown with the dashed lines. QuickPIC data (shown only on the right) is shown with dash-dot lines.
While not shown, there is excellent agreement for the ap = 0.5 and ap = 1 cases.

solver, and the differences at ag = 4 are believed to be due to particle trapping. Note
that if a trailing particle beam is loaded into the wake that it would normally be added
at locations in the wake where the agreement between the full PIC and quasi-static PIC
is still excellent even for this value of ag . Up to a small phase difference in the laser
pulse, the explicit PIC codes agree very well for all values of ag. While not shown, all
three codes agree excellently for ap = 0.5, 1. Two-dimensional contour plots of the wake
fields are shown for ag = 4 in Figure 3.

For the second-order particle shapes—which have been shown to reduce certain
kinetic errors [12]—the ayp = 1,2,4 cases were performed with VORPAL and OSIRIS.
Figure 2 shows the laser and wake fields for runs with second-order particle shapes for
ap = 2,4. The laser phase difference seen between the two codes is larger, closer to 7,
but the agreement in the wake fields is still very good. One can see a slight difference
in the location of the wake for ag = 4, but agreement is excellent for lower values of a.
Figure 4 shows the 2D contour plots of the wake fields for ap = 4.

318



0 20 40 60 80 100 120 140 70 20 40 60 80 100 120 140
LWy LWy

(@ (b)

0 20 40 60 80 100 120 140 040730 40 60 80 100 130 10
Zuy Wy

¢ ¢
© )

FIGURE 2. The electric field in the direction of laser polarization (left plots) and in the direction of
laser propagation, or wake field, (right plots) with second-order particle shapes. Figures (a) and (b) are for
ag = 2, and figures (c) and (d) are for ag = 4. OSIRIS data is shown with the solid lines. VORPAL data
is shown with the dashed lines. While not shown, agreement is excellent for ap = 1, as well.

AL
(T

@ (b)

FIGURE 3. Contour plots of the wake fields produced by OSIRIS (a) and VORPAL (b) for ap = 4 with
first-order particle shapes (i.e., first-order field interpolation and first-order current deposition).
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CONCLUSIONS

The exercise performed in this paper compares the laser and wake fields produced by
a short pulses propagating a small distance into the plasma. We find that the fields
generated by all three codes agree very well for these simple LWFA simulations. For low
values of ag (i.e., ag < 2), the quasi-static code QuickPIC shows excellent agreement
with the explicit PIC codes, VORPAL and OSIRIS. For larger values of ay, effects
from boundary conditions and the onset of particle trapping lead to differences between
QuickPIC and the explicit PIC codes. However, for all values of ag simulated, the
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FIGURE 4. Contour plots of the wake fields produced by OSIRIS (a) and VORPAL (b) for ap = 4 with
second-order particle shapes (i.e., second-order field interpolation and second-order current deposition).

explicit PIC codes agree very well with each other.

This marks the successful conclusion of the first benchmarking effort with the three
codes, VORPAL, OSIRIS, and QuickPIC. A more thorough comparison of the codes
might include comparisons of the dispersion relation and pulse evolution for long propa-
gation distances, particle trapping, and other kinetic phenomena. Such comparisons will
assuredly take place in future benchmarking efforts.
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