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Abstract. Staging laser plasma accelerators is an efficient way of mitigating laser pump
depletion in laser driven accelerators and necessary for reaching high energies with compact
laser systems. The concept of staging includes coupling of additional laser energy and
transporting the electron beam from one accelerating module to another. Due to laser damage
threshold constraints, in-coupling laser energy with conventional optics requires distances
between the accelerating modules of the order of 10m, resulting in decreased average
accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws
to show that the total length of future laser plasma accelerators will be determined by staging
technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and
show that it has the potential to reduce distance between stages to the cm-scale.
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INTRODUCTION

Laser wakefield accelerators (LWFAs) have achieved remarkable advances over
the last decade. Several research groups have now produced electron beams with
percent level energy spread, small divergence [1-3] and energies reaching up to 1.1
GeV [4]. Scaling of these results to the 10GeV level is expected as PW class lasers
become available. At the same time effects of laser depletion and electron-wake
dephasing limit the energy achievable in a single stage (length) of plasma. One can
deduce this from the basic scaling laws that govern the process of laser plasma
acceleration [5]. The energy gain Wi, that can be achieved in a single length of
plasma drops with increasing plasma density » as n”!. At the same time, for normalized
laser intensities ap>1 (which are typically used for LWFAs), accelerating length in
plasma is limited by laser energy depletion which scales as n*”. In order to increase
the energy gain at a given laser energy, we are forced to use lower density plasma
which in turn will increase the required propagation length. These considerations are
illustrated in Fig.1 which shows energy gain and single stage length for a laser plasma
accelerator (calculated using a fluid code [6]). We can see from Fig.1 that in order to
reach an energy of 1 TeV in a single stage plasma density of ~10"%cm? is required,
while the accelerating length in this case has to be of the order of 1km. Staging allows
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one to use higher plasma densities that produce higher peak accelerating gradients. It
results, as we show below, in significant reduction of the total length of the LWFA for
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FIGURE 1. (a) Single stage length (a) and (b) energy gain in a laser plasma accelerator as a
function of plasma density, with normalized laser intensity a,=1.
TeV level energies. Additionally, staged LWFAs will use multiple laser systems (one
for each stage) that can potentially run at high repetition rate since the energy
requirement is much reduced from a single stage device.

A generic approach to staging laser wakefield accelerators is schematically
illustrated in Fig.2. The accelerating modules (either gas jets or capillaries) are
arranged in series, with a separate laser beam coupled into each one of them. Thus the
length of a single stage is a sum of the accelerating length Ly, and the distance L.
required for coupling an additional laser beam. The number of stages as a function of
plasma density is shown in Fig.3a. The total accelerator length for a final energy of
1TeV is shown in Fig.3b for several different coupling lengths L.. We can see that the
total acceleration length exhibits a minimum that determines the optimal plasma
density. Operating at this optimal density with L, on cm-scale will allow TeV level
energy gain in a total distance of about 100 m. Minimizing L. will therefore be one of
the most important challenges involved in staging.

The most direct approach to in-coupling a laser beam would involve placing a final
focusing optic in the path of the electron beam while making an opening for the
electrons to pass through as shown in Fig.2. The laser beam size on the optic should be
large enough so that the power density is below the damage threshold of the dielectric
optical coating, which for sub-ps pulses is of the order of 0.05 J/cm?. This condition
puts a lower limit on the distance between the accelerating stages. For example, for a
10 J laser pulse focused into a 50 um spot, in order to keep the power density below
the damage threshold, the distance between the focusing optics and the accelerating
stage (and hence the coupling distance L.) should be of the order of 10m. This reduces
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FIGURE 2. Schematic illustration of LWFA staging.
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FIGURE 3. (a) Number of stages and (b) total length of staged LWFA as a function of plasma density

the average accelerating gradient to ~1 GV/m and results in the total length of the
accelerator of ~10km. Additionally, at these long L. complicated electron beam
transport lines can be required for coupling electrons from one stage to the other.
Alternative solutions will therefore be needed in order to preserve the advantages of
laser plasma accelerators over conventional technology. In the next section we will
discuss one of such alternative approaches that is based on using reflection of a
supercritical plasma surface, i.e., a plasma mirror

ACCELERATOR STAGING USING PLASMA MIRRORS

The concept of plasma mirrors has developed together with advances in high power
ultrafast lasers [7-9]. Laser pulses with peak intensities of the order of 10'°-10""W/cm?
will ionize a solid target and produce supercritical plasma during the rise of the pulse.
The rest of the pulse will thus ‘see’ a plasma surface acting as a high reflector. This
concept proved useful for enhancing the pulse contrast in multi-TW class lasers since
low intensity background and prepulses do not produce plasma and therefore are not
reflected.

Plasma mirrors operate at intensities of the order of 10'°W/cm® — orders of
magnitude higher than any conventional optics. From the perspective of laser
accelerator staging, it should therefore be possible to significantly reduce the distance
between the accelerating stages by employing a plasma mirror as the final in-coupling
optic. Assuming a drive laser beam with 0.5PW peak power and focal spot of 50 pum,
the coupling distance reduces to ~10cm. As fig 2b shows, this significantly reduces the
overall laser-plasma accelerator length.

At the same time, being a highly nonlinear system, plasma mirror are harder to
operate than conventional optics. Several considerations should be taken into account.
First, the plasma mirror should provide high reflectivity while preserving the quality
of the laser beam. Second, since the surface of the target is locally destroyed on every
laser shot, a fresh target surface must be supplied. Lastly, producing large amount of
debris can result in decreased performance and even damage of conventional optics
and diffraction gratings. In the following we examine these requirements in detail.

Several research groups have reported detailed studies of the reflectivity of the solid
target plasma mirrors [7-10]. Typical ‘triggering’ intensities (laser power at which
reflection starts to increase compared to Fresnel reflection) are of the order of 10" to
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10" W/em?, with peak specular reflectivity reaching 70-80% at intensities around few
10" W/em®. A sharp drop in specular reflectivity has been observed around
10" W/cm? and has been attributed to nonlinear expansion of the plasma [8, 9]. The
reflected mode quality was found to be similar to that of the input beam since near the
maximum the reflectivity of the plasma scales approximately as I'?, where I is the
input intensity [9]. It should be noted that the quality of the reflection depends strongly
upon the intensity contrast of the laser pulse. In cases where ps to ns pre-pulses are
strong enough to ionize the target before the arrival of the main pulse, nonlinear
expansion of the plasma will strongly degrade the mirror performance.

Most plasma mirror systems demonstrated previously employed mechanical
scanning of solid state targets in order to provide a fresh surface for every new shot of
the laser [7-10]. While this is acceptable for lasers with repetition rates in the range of
1 to 10Hz, future laser plasma accelerators are expected to operate at kHz repetition
rate, which will make the implementation of mechanical scanning extremely
challenging. An alternative solution that was first described in Ref.[11] employs using
a continuously flowing planar liquid jet. In this case the renewal of the surface is
achieved automatically. The authors of Ref. [11] demonstrated their approach with
1kHz repetition rate laser using a jet of ethylene glycol. While using ethylene glycol is
attractive due to its high viscosity and low vapor pressure, it does not relieve the
danger of potential contamination of the optics by carbon-containing compounds.

Substituting water for ethylene glycol in the liquid jet can solve the contamination
problem. The development of a planar water jet, however, represents a significant
challenge due to the low viscosity of water (about 20 times smaller than that of
ethylene glycol). Several solutions have been proposed including reflecting a jet from
a flat solid surface [12], razor blades to form the flow [13] and guiding structures [14].
The guiding structure, which is usually a “u”-shaped wire inserted in the nozzle,
prevents surface tension collapse of the water jet for the low flow speeds that are
needed to create a laminar flow. Using a guiding structure as shown below, allows
achieving stable planar water jet suitable for use as a plasma mirror

CHARACTERIZATION OF THE WATER JET PLASMA
MIRROR

For development of the water jet plasma mirror we have utilized a commercial
sapphire nozzle designed for use in dye lasers. The cross section of the nozzle is 3.9 x
0.3mm. A u-shaped guiding structure has been cut from a piece of metal shim and
inserted into the nozzle. The flow in the jet was gravity driven providing speeds of
~2cm/sec. Under these conditions a stable flow is established providing a flat
reflection surface. The thickness of the jet was measured by femtosecond
interferometry to be around 200um.

Initial plasma mirror tests have been conducted at atmospheric pressure using 300
fs pulses in one of the probe lines of the 100 TW Ti:Sapphire TREX laser system. An
XPW system has been implemented to ensure the high intensity contrast of the input
pulse (10~ with respect to ps pre-pulse, 10" with respect to ASE pedestal) [15]. The
laser beam was focused by an achromatic lens to approximately a 30 um spot. The
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FIGURE 4. Reflectivity of water jet plasma mirror. The inset shows near field image of
reflected mode

reflected beam has been observed by a CCD camera, and reflectivity has been
calculated by calibrating the CCD with respect to the input laser power.

Plasma mirror reflectivity as a function of input fluence and intensity is shown in
Fig.4. Due to the limitations in the probe line power, we were unable to test the plasma
mirror above 10'* W/ecm?®. However, the reflectivity curve follows closely the results
observed by the other groups [8, 9], so we believe that similar reflectivity of 70-80%
can be achieved by increasing the intensity to ~10'° W/em?. In order to characterize
the plasma mirror at this power, however, a vacuum environment is necessary,
otherwise the interaction of the intense laser with air at atmospheric pressure can
produce significant reshaping of temporal and spatial structure of the pulse. In order to
analyze the stability of the water jet at low pressures, initial tests have been conducted.
The results are illustrated in Fig.5, which shows the reflected near field spots of a
HeNe laser focused on the water jet in a vacuum chamber. The jet remains stable
providing good quality reflection down to about 20 Torr. Below this pressure, bubbles
start forming on the jet, manifesting the onset of boiling. Differential pumping will be
necessary in order to integrate the water jet plasma mirror into the high vacuum
environment used in laser plasma accelerators. The design of such a differential
pumping system is currently in progress.

FIGURE 5. Near field image of the mode of HeNe laser reflected from the water jet at the
pressure of 25.6 torr
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SUMMARY

In summary, staging of laser plasma accelerators allows one to overcome laser
depletion limitations. The total length of a staged accelerator can be optimized by
proper selection of plasma density and by minimizing the coupling distance. The latter
can be achieved by using a plasma mirror as final optic for laser in-coupling. Use of a
planar water jet as a renewable non-contaminating plasma mirror has been proposed
and an initial experimental characterization has been performed. We believe that
staging together with further progress in LWFAs will enable compact laser-plasma
accelerators to generate particle energies suitable for high-energy physics research.
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