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Abstract. Laser wakefield acceleration experiments were carried out by using a hydrogen-filled
capillary discharge waveguide. For a 15 mm long, 200µm diameter capillary, quasi-monoenergetic
e-beams up to 300 MeV were observed. By de-tuning discharge delay from optimum guiding
performance, self-trapping was found to be stabilized. For a 33 mm long, 300µm capillary, a
parameter regime with high energy electron beams, up to 1 GeV, was found. In this regime, the
electron beam peak energy was correlated with the amount of trapped electrons.

INTRODUCTION

Electron accelerators based on laser-driven plasma wakefield acceleration (LWFA) [1]
have demonstrated high field gradients up to hundreds of GV/m, and the production of
quasi-monoenergetic electron beams (e-beams) with energies of the order of 100 MeV
in just a few millimeters [2–4]. Recently, by using a hydrogen-filled capillary discharge
waveguide, LWFA up to a GeV has been realized at Lawrence Berkeley National Labo-
ratory (LBNL) [5, 6]. In this scheme, intense laser pulses were guided over a distance 10
times the Rayleigh range by a preformed plasma channel with sufficiently low density
to reduce energy gain limitations imposed by diffraction and dephasing [1]. During the
laser plasma interaction, electrons were self-trapped from the background plasma, and
accelerated up to the GeV level.

In the first generation of the capillary discharge guided LWFA experiments, accelera-
tor performance was found to be quite sensitive and to exhibit a complicated interdepen-
dence on input laser and plasma parameters, such as the delay between the onset of the
discharge current and arrival of the laser beam (discharge delaytd), the estimated on-
axis plasma densityn0 [7], the peak laser powerP, and the capillary diameter. Electron
beams with energies of 1 GeV were obtained in a 33 mm long, 300µm diameter capil-
lary for P ∼ 42 TW andn0 ≃ 4.3×1018 cm−3. Although 1 GeV beam generation was
not stable, a statistical analysis did show a parameter regime where 0.5 GeV e-beams
were produced with improved stability by tightly controlling the input parameters for a
33 mm long, 225µm diameter capillary.

In order to design the next generation apparatus for stable production of higher quality
e-beams, with small emittance and high energy and charge, it is critical to untangle this
interdependence of input laser and plasma parameters, which requires further parameter
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exploration and analysis. In this paper, we report a performance analysis of the capillary
discharge guided LWFA using a 15 mm long, 200µm diameter and a 33 mm long,
300 µm diameter capillary. Experiments varying capillary length give insight into the
trapping and dephasing physics of the capillary discharge guided LWFA.

EXPERIMENTAL SETUP

The schematic of the capillary discharge guided LWFA experiments is shown in Fig. 1.
The laser that was utilized was the short pulse, high peak power and high repetition rate
(10 Hz) Ti:Al2O3 laser system of the LOASIS facility at LBNL. The laser was focused
onto the entrance of a capillary discharge waveguide by an f/25 off-axis parabolic mirror.
A typical focal spot size wasr0 ≃ 25 µm containing 60% of the laser energy. Here, a
Gaussian transverse profile ofI = I0exp(−2r2/r2

0) is assumed. Full energy and optimum
compression givesP = 43 TW [τin ≃ 40 fs in full width half maximum (FWHM)
intensity], calculated peak intensityI0 = 2P/πr2

0 ≃ 2.6×1018 W/cm2, and normalized
vector potentiala0 ≃ 8.6×10−10λ [µm]I1/2[W/cm2] ≃ 1.1.

The capillary waveguide was laser-machined in a sapphire plate. Hydrogen gas was
introduced into the capillary using two gas slots as shown inFig. 1 (inset). A discharge
was struck between two electrodes located at each end of the waveguide, using a high
voltage pulsed power supply that utilized a 4 nF capacitor charged to between 15 and
18 kV. Measurements showed that a fully ionized, approximately parabolic channel was
formed on axis [7]. This fully ionized feature was also confirmed by the absence of
ionization induced blueshifting of the transmitted laser spectrum when a low power
(< 0.2 TW) laser pulse was guided.
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FIGURE 1. Schematic diagram of the capillary discharge-guided laserwakefield accelerator and di-
agnostics. The detailed description of the capillary discharge unit is in the upper inset, and that of the
electron spectrometer can be found in Ref. [8].
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The e-beams generated were characterized by an electron spectrometer utilizing a
round dipole magnet with a maximum magnetic field of 1.25 T andeffective radius of
195 mm. The magnetic spectrometer allowed simultaneous measurement of the laser and
e-beam due to its large gap, and single shot measurement of electrons from 0.01 GeV to
0.14 GeV (bottom view) and 0.17 GeV to 1.1 GeV (forward view) [8]. The laser energy
was monitored both before and after the interaction to evaluate the guiding efficiency and
guided beam quality. The laser output spectrum was measuredby a broadband optical
spectrometer which covers a wavelength range of 320 to 1000 nm in a single shot.

RESULTS

In experiments using a 15 mm long, 200µm diameter capillary, the guiding performance
and e-beam generation showed clear dependence on the discharge delay. Shown in
Fig. 2(a) are the discharge delay dependence of several binned spectra. The center is
defined as the light within the frequency bandwidth of 770≤ λ ≤ 835 nm, and 100% of
incident light was within this band. The red (blue) shift is defined as 835< λ < 1100 nm
(320< λ < 770 nm). The input laser parameters were 0.9 J (±3%), 41 fs (a0 ∼ 0.8), and
the plasma density was 2.5 or 3.7×1018 cm−3. For relatively short discharge delay (td <
130 ns), significant red-shift and moderate blue-shift wereobserved, consistent with the
laser pulse modulation and energy deposition onto the plasma via wakefield generation.
For longer discharge delay (td > 130 ns), optical spectrum exhibited significant blue-
shift as well as red-shift, and the transmission efficiency dropped.

The probability of observing any e-beams on the electron spectrometer in the range
from 0.01 to 1.1 GeV is shown in Fig. 2(b) by dashed lines. Forn0 ∼ 2.5×1018 cm−3,
no electron beams were observed fortd < 110 ns and transmission efficiency was high
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FIGURE 2. Results for 15 mm long, 200µm diameter capillary: (a) Binned transmitted optical spec-
trum versus discharge delay forn0 ∼ 2.5× 1018 cm−3. The center is defined as the light within the
frequency bandwidth of 770≤ λ ≤ 835 nm. The red (blue) shift is defined as 835< λ < 1000 nm
(320< λ < 770 nm). (b) Transmission efficiency of laser pulses [solid line, triangles (circles) for
n0 ∼ 2.5(3.7)× 1018 cm−3], and the probability of e-beam observation on the electronspectrometer
[dashed line, squares (diamonds) forn0 ∼ 2.5(3.7)×1018 cm−3] versus discharge delay. For both figures,
the input laser parameters were 0.9 J (±3%), 41 fs (a0 ∼ 0.8). A total of 80 shots were taken for each
plasma density. Bars show minimum and maximum points.
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(> 80%). This suggests that, although a wakefield was generatedbased on the obser-
vation of significant red-shift, it was not large enough to trap background electrons.
Electron beams were observed for longer discharge delay, along with a drop in trans-
mission efficiency and enhanced blue-shift. Note that by using higher density plasma
(n0 ∼ 3.7×1018 cm−3), e-beams were observed for shorter discharge delay without sig-
nificant blue shift in transmitted optical spectrum.

The peak of the e-beam energy distribution (peak energy), the highest energy of
the e-beam energy distribution (maximum energy), and totalcharge observed on the
spectrometer versus discharge delay forn0 ∼ 3.7× 1018 cm−3 are shown in Fig. 3.
One can see that relatively high energy, low charge e-beams were observed with shorter
discharge delay while low energy, high charge beams were observed with longer delay.
For longer discharge delay, electron beams occasionally exhibit broadband, multiple
peak structure, and significant low energy tail.

Several mechanisms could be responsible for the enhancement of the blueshifting,
laser transmission loss, and electron trapping observed for longer discharge delay. For
longer discharge delay, the degree of ionization, depth of the plasma channel, and
plasma density decrease. It has also been suggested that theamount of discharge-ablated
material interacting with the laser pulse increased [9]. For a substantial amount of laser
pulse energy to be blueshifted by ionization requires the peak intensity of the laser pulse
to be within an order of magnitude of the ionization intensity of the ion species with
which the pulse interacts. In the case of hydrogen this is 1014–1015 W/cm2, several
orders of magnitude lower than the intensity of the laser in the channel. Ablated materials
(e.g., aluminum, oxygen) have higher ionization thresholds, and the deteriorated channel
may lead to laser ablation of the capillary wall. Alternatively, the blueshifting could be
caused by photon acceleration of the back of the laser pulse [11], if it has stretched
to a length of order the plasma wavelength. The reduced lasertransmission was likely
due to ionization and laser leakage from the channel rather than the stronger wakefield
generation because of the lower maximum energy observed forlonger discharge delay.
For enhanced trapping, recent studies suggested the interaction with a partially ionized
plasma could assist self-trapping [10, 12]. The discharge-ablated materials drifting to
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FIGURE 3. The peak energy (diamonds), maximum energy (circles), and total charge (squares) versus
discharge delay for 15 mm long, 200µm diameter capillary. Plasma density wasn0 ∼ 3.7×1018 cm−3,
and the laser parameters were 0.9 J (±3%), 41 fs (a0 ∼ 0.8). A total of 54 shots were observed with
electron beam. Bars show minimum and maximum points.
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the axis before the arrival of the laser could contribute to this process. Note that the
laser-ablated materials could not contribute to this process. Another possible reason is
increase of the on-axis plasma density due to the deterioration of the channel. Although
the degree of ionization decreases for longer discharge delay, the laser pulse was strong
enough to ionize hydrogen.

In 2006, generation of e-beams with energies of 1 GeV was reported for a 33 mm
long, 300µm diameter capillary with three gas slots [5, 6]. Similar to these results, a
parameter regime where e-beams with energies of up to 1 GeV were produced was found
for a 33 mm long, 300µm diameter capillary with two gas slots. Representative single
shot e-beam spectra are shown in Fig. 4. The plasma density was n0 ∼ 5.3×1018 cm−3,
the laser parameters were 1.5 J (±5.7%), 46 fs (a0 ∼ 0.93), and the discharge delay
wastd ∼ 580 ns. In this parameter regime, 51 shots were taken, and 37 shots produced
electrons above 400 MeV. Average peak energy was 713 MeV, andaverage charge was
6 pC. Since e-beams were often observed with low energy tail in this regime, electronss
with energy above 400 MeV were taken into account for the analysis. The average laser
transmission efficiency was 65%. With this capillary, up to 70% transmission efficiency
was observed for 700 ns discharge delay.

The peak energy and maximum energy versus total charge for 33mm long, 300µm
diameter capillary are shown in Fig. 5. The peak energy showed clear dependence
on the charge, while the maximum energy was somewhat insensitive to charge. One
possible explanation of this observation is the beam loading effect. The trapped electron
beam produces a wakefield which cancels the wakefield generated by the laser pulse.
As a result, the tail of the electron beam sees lower accelerating field while the head
sees maximum field, introducing energy spread to the electron beams. Another possible
explanation is that the higher charge beams were trapped over a large phase region in the
plasma wave, resulting in a larger energy spread. To producee-beams in a reproducible
manner, controlling the amount and the location of trapped electrons will be critical.
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FIGURE 4. Representative single shot e-beam spectra for a 33 mm long, 300 µm diameter capillary.
The density wasn0 ∼ 5.3×1018 cm−3, and the laser parameters were 1.5 J (±5.7%), 46 fs (a0 ∼ 0.8).
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SUMMARY

In summary, relativistic electron beam generation via a capillary discharge guided
LWFA was studied by using 15 mm long, 200µm diameter and 33 mm long, 300µm
diameter capillary. Generation of quasi-monoenergetic e-beams up to 300 MeV was ob-
served from the 15 mm long capillary, and up to 1 GeV was observed from the 33 mm
long capillary. By using longer discharge delay, self-trapping was stabilized for the
15 mm long, 200µm diameter capillary. This regime could be used to design a stable
self injection capillary discharge guided LWFA. While reproducible beams have been
observed in tightly controlled parameter regime, a controlled mechanism for injection
will be important to enhance the LWFA performance.
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