
Journal of Computational Physics 230 (2011) 61–86
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Characteristics of an envelope model for laser–plasma
accelerator simulation

Benjamin M. Cowan a,⇑, David L. Bruhwiler a, Estelle Cormier-Michel a,b,
Eric Esarey b, Cameron G.R. Geddes b, Peter Messmer a, Kevin M. Paul a

a Tech-X Corporation, Boulder, CO 80303, United States
b LOASIS Program, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 1 January 2010
Received in revised form 15 June 2010
Accepted 6 September 2010
Available online 15 September 2010

Keywords:
Plasma accelerator
Laser–plasma acceleration
Laser wakefield acceleration
PIC
Envelope model
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.09.009

⇑ Corresponding author. Tel.: +1 303 996 7521; fa
E-mail addresses: benc@txcorp.com (B.M. Cowan

(E. Esarey), CGRGeddes@lbl.gov (C.G.R. Geddes), me
Simulation of laser–plasma accelerator (LPA) experiments is computationally intensive due
to the disparate length scales involved. Current experiments extend hundreds of laser
wavelengths transversely and many thousands in the propagation direction, making expli-
cit PIC simulations enormously expensive and requiring massively parallel execution in 3D.
Simulating the next generation of LPA experiments is expected to increase the computa-
tional requirements yet further, by a factor of 1000. We can substantially improve the per-
formance of LPA simulations by modeling the envelope evolution of the laser field rather
than the field itself. This allows for much coarser grids, since we need only resolve the
plasma wavelength and not the laser wavelength, and therefore larger timesteps can be
used. Thus an envelope model can result in savings of several orders of magnitude in com-
putational resources. By propagating the laser envelope in a Galilean frame moving at the
speed of light, dispersive errors can be avoided and simulations over long distances become
possible. The primary limitation to this envelope model is when the laser pulse develops
large frequency shifts, and thus the slowly-varying envelope assumption is no longer valid.
Here we describe the model and its implementation, and show rigorous benchmarks for
the algorithm, establishing second-order convergence and correct laser group velocity.
We also demonstrate simulations of LPA phenomena such as self-focusing and meter-scale
acceleration stages using the model.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Laser-driven plasma-based accelerators (LPAs) [1,2] are capable of producing accelerating gradients orders of magnitude
higher than conventional accelerators. In an LPA, the ponderomotive force from a relativistic laser field drives electrons in a
plasma away from the region of high intensity. This excites a longitudinal oscillation—a wakefield—in the plasma, which can
sustain accelerating gradients into the tens to hundreds of GV/m. An electron bunch co-propagating with the plasma wave at
the correct phase will be accelerated.

The intensity of the laser pulse is characterized by the normalized vector potential a0 = eA0/mc, where �e and m are the
electron charge and mass, respectively, and A0 is the peak value of the vector potential of the laser field. For a monochromatic
field, this is equal to
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x: +1 303 448 7756.
), bruhwile@txcorp.com (D.L. Bruhwiler), ecormier@txcorp.com (E. Cormier-Michel), EHEsarey@lbl.gov
ssmer@txcorp.com (P. Messmer), kpaul@txcorp.com (K.M. Paul).

http://dx.doi.org/10.1016/j.jcp.2010.09.009
mailto:benc@txcorp.com
mailto:bruhwile@txcorp.com
mailto:ecormier@txcorp.com
mailto:EHEsarey@lbl.gov
mailto:CGRGeddes@lbl.gov
mailto:messmer@txcorp.com
mailto:kpaul@txcorp.com
http://dx.doi.org/10.1016/j.jcp.2010.09.009
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


62 B.M. Cowan et al. / Journal of Computational Physics 230 (2011) 61–86
a0 ¼
eEk

2pmc2 ; ð1Þ
where E and k are the peak electric field and wavelength of the laser. A relativistic laser field is defined by a0 J 1; this con-
dition implies that an electron can be accelerated to relativistic velocities in a single optical cycle. A key parameter of the
plasma wave is the characteristic plasma wavelength kp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p=nre

p
, where n is the plasma number density and re = e2/

4p�0mc2 is the classical electron radius. The plasma wave oscillates at the associated plasma frequency; in the linear regime,
where a0� 1, the angular frequency of the plasma wave is xp = 2pc/kp. In the typical regimes of LPA operation, nonlinear
effects cause the wave oscillation frequency to decrease [3]. In this paper we will consider in detail the special case of laser
wakefield acceleration (LWFA), in which the plasma wake is driven by a single short laser pulse. In order to drive the plasma
wake most efficiently, the laser pulse length must be on the order of kp [2].

Laser–plasma acceleration uses plasmas which are underdense with respect to the laser pulse, which means that kp� k.
In this case, the laser field propagates through the plasma with group velocity approximately vg ¼ cð1� k2

p=k
2Þ1=2 in the 1D

limit, assuming a0� 1. Because the plasma wave is driven by the laser field, the laser group velocity is also the plasma wave
phase velocity. A highly relativistic electron bunch moving at �c will therefore advance with respect to the plasma wave
phase moving at vg < c, and after a sufficiently long propagation distance will leave the accelerating phase of the wake. This
process is called dephasing, and is one limitation on the length of an LPA stage. Another limitation is laser pulse depletion, in
which the laser pulse loses energy and redshifts. Both these limitations will be discussed further in subsequent sections; see
[2] for a detailed review of LPA physics.

Several years ago, high-quality electron beams were produced by self-trapping and accelerated to �100 MeV in a few mil-
limeters [4–6]. Since then, efforts have focused on obtaining beams useful for high-energy particle colliders [7] and radiation
sources [8–11]. This involves developing longer acceleration stages to achieve greater total energy gain, and controlling the
injection process for higher beam quality. Recently, acceleration to 1 GeV in a few centimeters was demonstrated [12]. In
addition, experiments have shown that the quality of the electron beam can be improved by tailoring the plasma density
profile in the injection process separately from the accelerating structure [13] or using colliding laser pulses [14]. For a
high-energy collider, studies indicate the need to stage many LPA modules, each on the order of 1 m in length and achieving
�10 GeV of energy gain [7].

Simulations have played a significant role the development of LPAs. In particular, the particle-in-cell (PIC) method, a well-
established algorithm for self-consistently modeling charged particles in electromagnetic fields [15,16], has been critical to
the understanding of the LPA processes. The PIC algorithm discretizes the values of the electromagnetic fields in space and
time on a Yee grid [17]. The Maxwell equations
@B
@t
¼ �$� E;

@E
@t
¼ c2$� B� 1

�0
J ð2Þ
are updated explicitly according to the finite-difference time-domain (FDTD) method [18]. The laser wavelength typically
used in LPA experiments is k = 800 nm; this must be well-resolved in a PIC simulation, and because of the Courant–Fried-
richs–Levy (CFL) limit [18], the time step must then be a small fraction of a laser oscillation period.

It is also important for LPA simulations to capture the kinetic effects of the plasma particles in order to model the injec-
tion of beams into a plasma wake and the creation of dark current in accelerating stages. Thus, the PIC algorithm also treats
the phase space coordinates of each particle explicitly. The particle momenta are updated using the Lorentz force equation
dp
dt
¼ qðEþ v � BÞ; ð3Þ
and the particle positions are then updated using dx/dt = p/c, where c is the Lorentz factor associated with the particle’s
momentum. The PIC method models particle kinetics by converting quantities between the discrete spatial grid and the con-
tinuous particle position space in order to define the electromagnetic fields at the particle positions and to define the electric
current density J on the FDTD grid. Fields are interpolated to particle positions using linear weighting or higher-order splines.
The current from the particles is deposited on the grid using the first-order charge-conserving scheme of Villasenor and Bun-
eman [19] or the higher-order method of Esirkepov [20] to reduce numerical noise; for best performance the same weighting
functions are used for interpolation and deposition. The PIC algorithm is well established, having been used extensively over
the past several decades.

Future explorations of laser–plasma acceleration present difficulties for PIC simulations, due to the disparate length scales
involved. The next generation of experiments will extend the accelerating stage length to �1 m for �10 GeV of energy gain.
Since the stage length is limited by the dephasing length Ld � k3

p=k
2, those experiments will use lower plasma density, and

hence larger kp, to allow acceleration over this length, and correspondingly longer laser pulses. The transverse and longitu-
dinal dimensions of the simulation domain scale as kp. Thus the simulations would have to encompass many thousands of
cells longitudinally and hundreds transversely, and run for tens of millions of timesteps. For example, a plasma density of
n = 1023 m�3 gives a plasma wavelength of kp = 106 lm and a dephasing length of 1.8 m; the stage length is in fact limited
to 0.9 m in order for the particle bunch to remain in the focusing phase of the transverse wake. For typical PIC simulation
parameters, this would require about 10,000 grid cells longitudinally, 2500 in each transverse dimension, and over 50 mil-
lion time steps. This is intractable even in two dimensions [21]. While the injection process in an LPA occurs over a shorter



B.M. Cowan et al. / Journal of Computational Physics 230 (2011) 61–86 63
distance, running PIC simulations of the injection process in 3D is expensive enough to make parameter studies for beam
quality optimization quite difficult.

New tools are therefore needed to perform these simulations more quickly while preserving as much as possible of the
physics modeled by PIC. Approximations to the full particle and field dynamics have been explored, both for theoretical insight
and to ease computational burden. The quasi-static approximation [3] assumes that in a Galilean frame co-propagating along
with the laser pulse at c, the laser field, plasma density, and associated wakefield change on the time scale of k2

p=kc (in 1D, or xR/c
in 3D with xR the Rayleigh length), so that the laser period, and even a plasma period, need not be resolved in time. The quasi-
static approximation has been implemented in several codes, including the fluid code LEM [22] and the particle codes WAKE [23]
and QUICKPIC [24]. In addition, these codes applied the envelope approximation, in which the slowly-varying envelope of the
laser pulse is modeled, rather than the laser field itself. This removes the need to spatially resolve the laser wavelength.

An alternative approach to resolving the disparity in length scales is the use of a Lorentz frame moving in the direction of the
laser pulse [25–29]. For normalized boost velocity b and Lorentz parameter c, the laser wavelength extends by a factor c(1 + b)
while the plasma length contracts by c, potentially yielding speedups on the order of c2. This method does not make any approx-
imations to the physics of the model, and speedups of several orders of magnitude have been reported in [27]. However, this
approach suffers from noise buildup, possibly due to unresolved backscattered radiation, and rigorous tests have demonstrated
a speedup factor of only�20 [28]. Although this approach is an exciting possibility, with full 3D PIC simulations of 10 GeV LPA
stages estimated to require over 1 billion CPU hours, the available speedup is at present insufficient for this problem.

Another laboratory-frame algorithm has been implemented which retains the envelope approximation, but relaxes the
quasi-static approximation somewhat. In that algorithm, the plasma period was temporally resolved, and the electromag-
netic fields, rather than the vector potential, were used to model the wakefield. In addition, quantities were modeled in
the lab frame, rather than the speed-of-light frame; this was implemented in the code turboWAVE [30]. Retaining the enve-
lope approximation allowed a coarsening of the longitudinal grid by a factor of kp/k versus full PIC, and consequently an in-
crease in the time step by a similar factor. Thus a speedup of (kp/k)2 over explicit PIC is possible. In addition, temporally
resolving the plasma period allowed modeling of kinetic effects which occur on that time scale, such as particle trapping,
not modeled by the quasi-static method.

The algorithm was implemented in the plasma simulation code VORPAL [31] and tested in limited cases [32]. More recently,
an improvement was made to the algorithm in order to resolve problems which appeared with long propagation distances,
and implemented in turboWAVE [33]. In this article, we explore this improved algorithm using its implementation in VORPAL.
First, we describe the numerical implementation of the algorithm. We then present some benchmark tests of the algorithm
for convergence, laser group velocity accuracy, and numerical kinetic effects. Finally, we show benchmarks against explicit
PIC for simulations of LWFA accelerator stages. We show that the model enables simulations of meter-scale stages important
to next-generation experiments. We also remark on the computation time advantages of the envelope model with respect to
explicit PIC. For clarity, we describe the theory behind the envelope approximation in detail in an appendix.

2. Numerical implementation

The numerical implementation of the envelope model is based on those in [33,32], but with several important differences.
As in those references, the laser field is modeled by a complex scalar field a which represents the modulation on the sinu-
soidal oscillation of a single component of the transverse vector potential. Specifically, the transverse vector potential in the
Coulomb gauge is given in terms of a by eA ¼ �̂a, where eA is defined in Eq. (51) in the appendix and �̂ is a constant polari-
zation vector with j�̂j ¼ 1. The PIC electromagnetic fields then represent only the fields due to the plasma dynamics, and not
the laser field. Unlike the implementation in [32], the one described here models the laser envelope in the speed-of-light
frame; unlike in [33], this implementation models the wakefields explicitly. The implementation we describe here also adds
a new particle push algorithm, which we show in Section 3.1 exhibits second-order convergence. The equations governing
the envelope model are derived in the appendix and the references therein; here we simply restate them for convenience.

2.1. Particle push

A key innovation of envelope models is that they incorporate both the direct response of the plasma particles to the PIC
wakefields and the response of the particles to the laser envelope field averaged over the time scale of a laser oscillation per-
iod. This averaged response is described by the ponderomotive force, which drives charged particles down the gradient of the
laser intensity. The equation for particle momentum, including the ponderomotive force, is, from Eq. (77)
dp
dt
¼ qðEþ v � BÞ � q2

4�cm
$jaj2; ð4Þ
where q and m are the particle charge and mass, respectively. The parameter �c is the slowly-varying component of the rel-
ativistic Lorentz factor, accounting for the particle quiver motion, and is given from Eq. (59) by
�c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jpj

2

m2c2 þ
q2jaj2

2m2c2

s
: ð5Þ
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The momentum p is the slowly-varying component of the momentum, and the corresponding velocity v is given by
v ¼ dx
dt
¼ p

�cm
ð6Þ
as per Eq. (67). The normalized laser intensity jaj2 is found by solving the slowly-varying wave equation for the laser
envelope.

Here we describe a new algorithm implementing this update, which improves on the previous algorithm in VORPAL. That
previous algorithm, described in [32], exhibited only first-order convergence as implemented in VORPAL; the new algorithm
has second-order convergence, as we show in detail in Section 3.1. Another benefit of this new algorithm is that it is simpler
than the previous one, requiring only linear arithmetic where the previous algorithm involved the solution of a quadratic
equation and a cubic equation.

Our algorithm for the particle push is based on the relativistic Boris push algorithm, which is used in conventional PIC
simulations to update particle phase space variables. The Boris algorithm can be readily adapted to include the ponderomo-
tive effects. At first glance, this would seem quite difficult. In the Boris algorithm, to update a particle to time step n + 1, the
momentum is first advanced from n � 1/2 to n + 1/2, with both the position and the electromagnetic fields assumed constant
at their values at time n. The position is then updated from n to n + 1 with the momentum assumed constant at its value at
time n + 1/2. This results in time-discretization error which is second-order in Dt. The difficulty in including the ponderomo-
tive effects arises from the fact that �c must be known at the middle of the time step for the position update. This requires
knowledge of jaj2 at the particle position, so the particle position must be known at time n + 1/2. This would seem to defeat
attempts to formulate a leapfrog-style algorithm.

However, a leapfrog algorithm very similar to the Boris push is possible by taking advantage of an observation about the
ponderomotive force. From the equations of motion, it seems that the quantity jaj2 behaves somewhat like a ‘‘potential” for
the particle. This would suggest that a particle moving only under the influence of the ponderomotive force would not expe-
rience a change in some relevant ‘‘total energy” quantity. Indeed, we can attach a precise meaning to this heuristic argument
by considering Eq. (82): We see that �c only changes as a result of an electric field or a time variation in jaj2. In particular, if we
can consider a to be fixed and ignore the effects of E, then we can treat �c as constant.

The leapfrog algorithm can then be formulated by incorporating the change in momentum from the ponderomotive force,
that is, the last term in Eq. (4), into the particle position update instead of the momentum update. In addition, consider a to
be temporally located at the half-integer time steps, so that it can be considered fixed during the position update. Then, the
change in �c from the ponderomotive force will cancel the change in �c from the particle’s motion in the laser field, at least to
second order in the time step.

We can now describe the ponderomotive particle push algorithm precisely. First, the momentum update from n � 1/2 to
n + 1/2 is carried out exactly as in the Boris algorithm, except that �c is used in place of c. Since the particle position is con-
sidered fixed during the momentum update, this is not problematic as long as a is known at time step n. The position update,
including the ponderomotive force, proceeds as follows: We first compute �c, which we use throughout the update as justified
above. We then perform the ponderomotive force update to the momentum for half a time step, then move the particle, then
perform the ponderomotive force update for the final half time step.

To describe the particle position update algorithm from time step n to n + 1, we denote the initial position by xjn, the
momentum by pjnþ1=2

� , and the envelope field at the middle of the time step by ajn+1/2. We then define
�c0 ¼
1

mc
pjnþ1=2
�

��� ���2 þ q2 ajnþ1=2ðxjnÞ
��� ���2

2
þm2c2

264
375

1=2

: ð7Þ
This is the �c we use throughout the position update. We also define the ponderomotive force for the first half of the time step,
Fjn ¼ $ ajnþ1=2
��� ���2� �

xjn
: ð8Þ
We then apply the ponderomotive force to advance the momentum for the first half of the time step, obtaining its value at
the middle of the time step,
pjnþ1=2
0 ¼ pjnþ1=2

� � q2Dt
8�c0m

Fjn: ð9Þ
We can now perform the position update:
xjnþ1 ¼ xjn þ pjnþ1=2
0

�c0m
Dt: ð10Þ
To enable the envelope field update, detailed in the next section, we also compute the position in the middle of the position
update and deposit the gridded plasma susceptibility based on that position. Finally, we apply the ponderomotive force for
the second half of the step. To this end we define the relevant ponderomotive force by evaluating rjaj2 at position xjn+1,
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Fjnþ1 ¼ $ ajnþ1=2
��� ���2� �

xjnþ1
: ð11Þ
Then we use this force to advance the momentum for the second half of the time step, so we have, for the final momentum,
pjnþ1=2
þ ¼ pjnþ1=2

0 � q2Dt
8�c0m

Fjnþ1
: ð12Þ
This completes the update of the particle phase space variables.

2.2. Envelope field update

The evolution equation for the envelope field is derived in the Appendix, and given in Eq. (105),
2
x0

@

@s
1þ i

k0

@

@n

� �
þ i

k2
0

r2
?

" #
a ¼ �iva: ð13Þ
Here x0 is the central frequency of the laser pulse, k0 = x0/c, and v is the scalar field representing the local plasma suscep-
tibility, given in Eq. (103).

To update the envelope field, we must discretize Eq. (13) in both time and space. We begin with the temporal discreti-
zation. For the @/@t operator, we use central differencing. This requires that we use both ajn+1/2 and ajn�1/2 to update to ajn+3/2,
applying Eq. (13) at time n + 1/2 (recall that a is temporally located at half-integer time steps). In addition, for the r2

? term,
we use the Crank–Nicholson scheme, using the averaged quantity
ajn�1=2 þ ajnþ3=2

2
ð14Þ
in place of ajn+1/2. This temporal discretization gives
2
x0

1þ i
k0

@

@n

� �
ajnþ3=2 � ajn�1=2

2Dt
þ i

k2
0

r2
?

ajn�1=2 þ ajnþ3=2

2
¼ �ivjnþ1=2ajnþ1=2

: ð15Þ
We can isolate the difference ajn+3/2 � ajn�1/2 to obtain
1
x0Dt

1þ i
k0

@

@n

� �
ajnþ3=2 � ajn�1=2
� 	

þ i

k2
0

r2
?

ajnþ3=2 � ajn�1=2

2
þ i

k2
0

r2
?ajn�1=2 ¼ �ivjnþ1=2ajnþ1=2

; ð16Þ
or
1
x0Dt

1þ i
k0

@

@n

� �
þ i

2k0
r2
?

� �
ajnþ3=2 � ajn�1=2
� 	

¼ �i vjnþ1=2ajnþ1=2 þ 1

k2
0

r2
?ajn�1=2

 !
: ð17Þ
For the spatial discretization, we use central differencing in the longitudinal direction, so
@a
@n

����
j;k;l

¼
ajjþ1;k;l � ajj�1;k;l

2Dx
: ð18Þ
The transverse Laplacian takes the usual discrete form
r2
?a

h i
j;k;l
¼

ajj;kþ1;l � 2ajj;k;l þ ajj;k�1;l

Dy2 þ
ajj;k;lþ1 � 2ajj;k;l þ ajj;k;l�1

Dz2 : ð19Þ
To update the envelope field, then, an implicit solve of the spatially-discretized form of the operator
M ¼ 1
x0Dt

1þ i
k0

@

@n

� �
þ i

2k0
r2
? ð20Þ
is performed to obtain ajn+3/2 � ajn�1/2. This result is then added to ajn�1/2 to compute the updated field. The AZTECOO package
from the TRILINOS library [34] is used to perform the implicit solve. The matrix is expressed in its equivalent real form
bM ¼ ReðMÞ �ImðMÞ
ImðMÞ ReðMÞ

� �
ð21Þ
so that all complex quantities can be expressed in terms of their real components. This algorithm solves the linear update
equation from [33], Eq. (21), using the linear solver techniques employed for the lab-frame algorithm in [32]. In summary,
the envelope model described here is similar in implementation to previous work, but with a significant change to the par-
ticle push algorithm.
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3. Test problems

Before we discuss the envelope model applied to LPA cases of interest, we first describe tests conducted to ensure that the
algorithm behaves as expected. These tests also quantify certain features of the algorithm’s performance relative to explicit
PIC.

3.1. Convergence

A key aspect of any numerical algorithm relying on gridded quantities is its ability to converge to a fixed value as grid
resolution is increased. For PIC with explicit FDTD representation of the laser fields, figures of merit converge quadratically
in the grid resolution. To test convergence of the envelope model, and to compare its properties to explicit FDTD, we use a
simple 1D simulation. A laser pulse is launched into vacuum and propagates through a density ramp to reach a region of
uniform density. The uniform density region has a density of n = 1024 m�3, and the ramp is a cosine ramp of length kp, where
kp is the plasma wavelength corresponding to the uniform density n. The laser pulse has a wavelength of k = 800 nm, a
Gaussian longitudinal profile with intensity RMS of LRMS = 1/kp (kp ¼ xp=c is the plasma wave number), and a normalized
peak intensity of a0 = 2. The simulation is run for time 10kp/c.

For the explicit FDTD simulations, the longitudinal grid spacing Dx is varied from k/16 to k/256. The CFL limit for stability
requires Dt 6 Dx/c, and it is known that dispersion error of fields on the grid alter the group velocity for Dt < Dx/c [18]. Thus,
while in 1D it is possible to pick a timestep for dispersionless behavior, this is not always practical in 2 or 3D, depending on
the transverse resolution required. Hence the time step Dt is set to 0.9995 of the CFL limit corresponding to the Dx for that
simulation and a fixed Dy = k/3 (similar to the resolution used in [4–6] to resolve the transverse wake structure). For the
envelope model, Dx is varied from kp/16 to kp/256, and Dt is set to 0.9995 of the CFL limit corresponding to a fixed
Dy = kp/16; fixing Dy is for consistency with the explicit simulations. In both cases four particles per cell are used with
third-order interpolation and deposition.

As figures of merit for the convergence tests, we choose the amplitude and phase of the longitudinal wakefield Ex at the
end of the simulation. We use a cubic spline of the gridded field to extract the peak amplitude and zero crossing location of
the field. For the phase, in order to correct for the fact that simulations with different time steps will end at slightly different
times, we use the quantity kp(x � bgct), where x is the computed zero crossing location, bg is the analytic group velocity in the
linear regime (see Eq. (24)) for the model used in the simulation, and t is the time at the end of the simulation. For each res-
olution scan, we plot errors relative to the Richardson-extrapolated value assuming quadratic convergence.

We can see in Fig. 1 that the envelope model exhibits quadratic convergence in amplitude. Indeed, the amplitude error for
the envelope model with a given kp/Dx is nearly identical to the error in explicit FDTD for the same value of k/Dx. This indi-
cates that the reduction in amplitude, due to interpolation, at the extrema of the forces is responsible for the error, as the
reduction depends primarily on the ratio of grid spacing to wavelength of the driving force. In the envelope model, the driv-
ing force has wavelength kp, while in explicit FDTD, the force oscillates with wavelength k. This conclusion is also supported
by the fact that the errors are negative—the computed amplitudes approach their converged value from below.

The phase convergence of the envelope model, shown in Fig. 2, is more complex. At the highest resolutions, we observe
quadratic convergence, with a coefficient several orders of magnitude better than explicit FDTD, for the same ratio of grid
spacing to relevant wavelength; it is this ratio which characterizes how well the fields are resolved. As the resolution is
reduced, we see a change in sign—since the absolute value of the error is used in the logarithmic plot, this appears as a
Fig. 1. Amplitude errors of explicit FDTD and the envelope model as a function of resolution.
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cusp—followed by a different dependence. In fact, this dependence is quartic. We can subtract the quadratic dependence of
the phase error computed in the Richardson extrapolation from the two highest-resolution points. The residual error after
that subtraction for the remaining points is shown in Fig. 3, revealing quartic dependence.

From these results, we can conclude that for practical LPA simulations using the envelope model, in which a resolution of
�kp/40 (�k for this plasma density) would be used, we would obtain a relative plasma wake amplitude error due to discret-
ization of <1%. We would obtain a relative phase error of <10�5. Errors on this level are unlikely to affect the qualitative re-
sults of a simulation.

3.2. Numerical group velocity and dephasing

It is well known that the Yee FDTD algorithm for evolving electromagnetic fields exhibits a numerical group velocity for
electromagnetic waves that differs unphysically from the continuous case [18]. These numerical effects become more pro-
nounced as the spatial frequency of a wave increases relative to the grid spacing. This group velocity deviation is also most
pronounced for waves propagating along an axis. This is exactly the case for the laser field in an LPA simulation, which prop-
agates along an axis, and we wish to use a grid spacing that is as large as possible while still resolving the laser oscillations.
Since the laser wavelength is typically the smallest scale in the simulation, this leads to an expensive trade-off between
group velocity accuracy and simulation time. While the group velocity accuracy can be improved by increasing the cell as-
pect ratio, there is a limit to which this is practical, due to the need to resolve the transverse wake. Because the plasma wave
phase velocity is approximately equal to the laser group velocity in the limit a0� 1, numerical group velocity error leads to
an incorrect phase offset between the plasma wave and a highly relativistic particle bunch.
Fig. 3. Residual phase error after subtraction of the quadratic component.
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Fortunately, the laser envelope model does not suffer these numerical effects, exhibiting the correct group velocity even
with its coarser resolution and low aspect ratio cells. To further test the group velocity error of explicit PIC and the envelope
model, we run 2D simulations of a linear (a0 = 10�3) laser pulse in a matched parabolic plasma channel. For linear pulses, the
group velocity can be computed analytically, so we can compare both explicit and envelope simulations to theoretical values.
It is known that a Gaussian laser mode with spot size w0 is matched to a plasma channel with transverse profile
n ¼ n0 þ r2=prew4

0 [35]. (Note that we use the notation w0 for spot size, as per [36], rather than r0 as in [35].) Generalizing
to spot profiles which are not azimuthally symmetric, a plasma channel with transverse profile
Fig. 4.
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matches a laser mode with arbitrary spot sizes wy and wz in the transverse directions. The group velocity of such a mode can
be characterized by the parameter k1, given by
k2
1 ¼ kð0Þp
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z
; ð23Þ
where kð0Þp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pn0re
p

is the plasma wavenumber corresponding to the background plasma density n0. The normalized group
velocity bg = vg/c is then [37]
bg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

1

k2
0

vuut : ð24Þ
Before we compare theoretical and simulation results, we first define an appropriate figure of merit. Since group velocities
will all be fairly close to c, relative errors will be hard to detect. Instead, we choose a figure of merit that is relevant for the
dephasing phenomenon, which limits the overall energy gain in an LPA stage. We therefore define the dephasing factor as the
dimensionless parameter fd such that a particle which propagates a distance x at the speed of light acquires a phase relative
to the plasma wave of magnitude fdkpx. The plasma wave phase is given by /p = xpt � kxx, where kx = xp/bgc. A speed-of-light
particle propagates a distance x in time x/c, and so acquires phase
/p ¼ xp
x
c
� xp

bgc
x ¼ 1� 1

bg

 !
kpx: ð25Þ
Since we are interested in the magnitude of the phase offset, we define the dephasing factor to be the positive number
fd ¼
1
bg
� 1: ð26Þ
We run tests for a range of plasma densities n0 at the bottom of the channel. For each n0, we let kp ¼ 2p=kð0Þp be the cor-
responding plasma wavelength. Then we set the RMS length LRMS of the Gaussian laser pulse intensity such that kð0Þp LRMS ¼ 1,
and the transverse waist size such that w0 = kp. The plasma density profile is then described by Eq. (22), with wy = w0 and
The dephasing factors for explicit PIC and envelope model simulations compared to continuous theory. n0 is the plasma density at the bottom of the
channel.



Fig. 5. The dephasing factors for explicit PIC with Dy = kp/40, the envelope model, and continuous theory.
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w�1
z ¼ 0. We propagate the laser pulse up a cosine density ramp of length 10 lm, focusing the spot at the start of the lon-

gitudinally uniform density region. The laser pulse has a center wavelength of k = 800 nm.
For the explicit PIC simulation, we use grid spacings of Dx = k/24 and Dy = k/3; for the envelope model simulations we

take Dx = Dy = kp/40. In each case we use 1 particle per cell with 3rd-order interpolation and current deposition. The results
of these tests are shown in Fig. 4. We see that while explicit PIC develops significant dephasing errors as the density is de-
creased, the envelope model retains the correct dephasing factor. The relative error in explicit PIC is lower at higher density
because the physical dephasing is larger; the absolute errors remain the same to within a factor of 2 over the entire density
range. Even at the intermediate density of n0 = 1024 m�3, which might be used for a scaled simulation [38], explicit PIC still
shows dephasing which is 50% larger than the correct value.
Fig. 6. Tests of resolution and particles per cell: (a) Dx = kp/36 with NPPC = 100, (b) Dx = kp/60 with NPPC = 100, (c) Dx = kp/36 with NPPC = 400, and (d) Dx = kp/
60 with NPPC = 400. Particles which begin in the ramp region are shown in red; those from the uniform region in blue. (For interpretation of the references to
colours in this figure legend, the reader is referred to the web version of the paper.)



Fig. 7. Final macroparticle phase space vs. resolution for (a) Dx = kp/20, (b) Dx = kp/24, (c) Dx = kp/30, (d) Dx = kp/36, (e) Dx = kp/48, and (f) Dx = kp/60.
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Attempts to use explicit, laboratory-frame FDTD to model the laser field in meter-scale simulations could alternatively
increase the aspect ratio by holding Dy � kp to reduces the dephasing error. Even in this case, we have found in additional
simulations that it is still significantly larger than the error of the envelope model. Fig. 5 shows a comparison of the dephas-
ing factors for the explicit case with Dy held fixed at kp/40, the envelope model, and continuous theory. We see that at the
lowest densities, explicit FDTD still exhibits dephasing error of over 30% even in this case.

These tests show that the envelope model obtains the correct group velocity for a laser pulse in a channel, a critical quan-
tity for LPA simulations and a distinct improvement over explicit FDTD. They also show correct propagation of laser fields at
an angle, since the Gaussian pulse includes plane wave components with nonzero transverse wavevector (which would be
difficult to test with a plane wave given the Cartesian nature of the grid).

3.3. Kinetics

It is known that the PIC method for simulating laser–plasma acceleration introduces error in the particle phase-space
orbits due to interpolation of the fields at the locations of the particles. This has been described in detail for explicit PIC
simulations in [39]. Here we examine these effects for the envelope model using 1D simulations.



Fig. 8. Final macroparticle phase space for first- through fourth-order particles with Dx = kp/36 and Dx = kp/60 resolutions. Interpolation order varies with
the row, while resolution varies with the column.
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We use physical parameters identical to those used in [39]. Namely, we set the plasma density so that the ratio of
wavelengths kp/k = 10, giving a density of n = 1.74 � 1025 m�3 for a laser wavelength of k = 800 nm. The laser pulse starts
in vacuum and propagates through a cosine ramp of length l = 105 lm before reaching the region of uniform plasma density.
The laser pulse has a Gaussian longitudinal profile with LRMS = 1/kp and a normalized peak intensity of a0 = 2. The simulation
is run for time 31.5kp/c, and the length of the global simulation domain is 130 lm.

We begin by looking at the basic numerical parameters of grid resolution and particles per cell for 1st-order particles.
Fig. 6 shows the resulting phase space distributions for all combinations of grid spacings Dx = kp/36 and Dx = kp/60 with
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particles per cell NPPC = 100 and NPPC = 400. We show the particles from the ramp and uniform regions using different colors
because of the different physics in the two regions. The cold relativistic wave-breaking field and wakefield amplitude both
vary with the plasma density, so trapping in the ramp region does not by itself indicate unphysical numerical effects. We first
notice a similar but exaggerated effect of unphysical trapping relative to the explicit PIC tests reported in [39]. For instance,
in the explicit tests with Dx = kp/36 and NPPC = 400, injection occurs in the eighth bucket behind the laser pulse; here it occurs
in the fifth. We also notice that both increasing the resolution and increasing the number of particles per cell reduces these
effects. In the remainder of these tests we therefore use NPPC = 400 to isolate the effects of the resolution and particle inter-
polation order.

Next, we consider in more detail the effect of grid resolution on unphysical trapping. Fig. 7 shows final phase space dis-
tributions for kp/Dx = 20, 24, 30, 36, 48, and 60. We see that trapping monotonically becomes further behind the laser pulse
as the resolution is increased, even at the lowest resolutions. This is in contrast to explicit PIC, in which the case for Dx = k/24
showed slightly less trapping than the higher resolution. The difference could be due the convergence of the wakefield
amplitude at lower resolutions in the envelope model.

Finally, we examine the effect of higher-order particles. Using-second order instead of first-order interpolation and
deposition results in a much greater reduction in unphysical trapping than increasing the resolution, as noted in [39] for
the explicit case. Fig. 8 shows the phase space distributions for first- through fourth-order particles for both Dx = kp/36
and Dx = kp/60 resolutions. We see that in going from first to second order with Dx = kp/36, while the injected particles in
the sixth bucket have higher energy, trapping from the fifth bucket is eliminated, and there are fewer injected particles in
the subsequent buckets, especially particles from the uniform plasma density region. Decreasing the grid spacing to kp/60
at second order eliminates injection from the fifth bucket, as well as any injection of particles from the uniform density
region. However, increasing the interpolation order beyond second shows trapping again in the fifth bucket at Dx = kp/36.

These results show that while the envelope model exhibits kinetic performance slightly inferior to explicit PIC, the
unphysical trapping is small enough that it will have a negligible effect on practical LPA simulations. The use of higher-order
particles restricts the trapping in the uniform density region to at least five plasma wavelengths behind the laser pulse. Since
the typical simulation domain is shorter than that, the moving window will shift the plasma out of the simulation before
unphysical trapping develops. Together with the results on convergence and group velocity, we have shown that the enve-
lope model behaves consistently with known physics and with high accuracy.

4. Benchmarks for full-scale simulations

Having established the performance of the envelope model algorithm in test simulations, we now demonstrate the capa-
bilities of this model for the design of future LWFA experiments. We choose as our test case a meter-scale, quasilinear LWFA
stage proposed for development at the BELLA facility at Lawrence Berkeley National Laboratory [38]. We note that this quasi-
linear regime uses laser intensities below the self-trapping threshold, so these stages are designed for an externally injected
bunch, for instance to cascade many stages for a high-energy collider [7]. An advantage of the quasilinear regime is that
acceleration and focusing of a positron beam can be carried out in a manner nearly symmetric to that of an electron beam.

For this case, we take the plasma density at the bottom of the channel to be n0 = 1023 m�3, which gives a plasma
wavelength of kp = 106 lm. We can compute the linear dephasing length associated with this density using Eq. (25). The
dephasing length Ld is the distance a particle propagates in which the plasma wave phase seen by the particle slips by p, so
1
bg
� 1

 !
kpLd ¼ p; ð27Þ
where kp = 2p/kp; this gives
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Using Eq. (24) in the limit k1� k0 gives 1=bg � 1 ¼ k2
1=2k2

0, where k1 is given by Eq. (23). Thus
Ld ¼
kp

k2
1=k2

0

¼ k2
0kp

k2
p þ 2=w2

y þ 2=w2
z

¼ k2
0kp

k2
p 1þ 2=ðkpwyÞ2 þ 2=ðkpwzÞ2
h i ¼ k3

p

k2 1þ 2

ðkpwyÞ2
þ 2

ðkpwzÞ2

" #�1

: ð29Þ
For our parameters, this gives Ld = 1.97 m. To balance the competing goals of having a long depletion length by avoiding
depletion into the transverse wake (which motivates a large spot size), with avoiding self-focusing (which requires a small
spot size), we choose kpw0 = 5.3, as in [40]. In order for the particle bunch to remain in the focusing phase of the transverse
wake, we choose a shorter plasma length of L ¼ k3

p=2k2 ¼ 920 mm. Finally, we choose an RMS (intensity) laser pulse length
given by kpLRMS = 1 and a normalized peak intensity of a0 = 1, based on the studies in [38,40].

As we demonstrate the envelope model for these experimental parameters, we wish to benchmark against explicit FDTD
simulations of the same parameters. Unfortunately, performing such meter-scale simulations with explicit, laboratory-frame
FDTD is intractable, even in 2D. We therefore compare the envelope model to explicit FDTD for scaled simulations, in which
the plasma density is increased to 1025 m�3 for the simulation, and quantities in the simulation results are then scaled



Fig. 9. Fluence profiles of the laser pulse, in J/m2. Agreement between explicit and envelope scaled simulations can be seen, and more rapid self-focusing
oscillations are visible in the unscaled case.
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appropriately to the meter-scale case [38]. In such simulations, the laser pulse length and spot size are scaled proportionally
to kp. The dephasing length scales as k3

p , and the acceleration and laser depletion lengths were shown to scale by that
amount; and since the wakefield strength scales as k�1

p , total energy gain by a particle bunch was shown to scale as k2
p .

The normalized laser intensity a0 is held constant. We also compare the explicit and envelope scaled simulations to an un-
scaled simulation using the envelope model. This will demonstrate any physical differences between the scaled and unscaled
parameters. It was shown in [38,40] that the wake structure is preserved by scaling in this manner, but that the ratios of laser
and electron beam focusing oscillation wavelength to the dephasing length were not. Thus the envelope model can be used
to accurately model and hence mitigate undesired effects of focusing oscillations.

We run each simulation in 2D. For the explicit simulation, we choose grid spacings of Dx = 33 nm and Dy = 134 nm, global
simulation domain sizes of Lx = 3.5kp = 37.0 lm and Ly = 59.9 lm for grid sizes of Nx = 1108 and Ny = 448; this includes 24
cells along each transverse edge for a perfectly-matched layer (PML) absorbing boundary [18, Chapter 7]. These parameters
are similar to those in [38], and they have been shown to be well-converged [40]. In the envelope scaled simulation, the laser
oscillations need not be resolved, so we use Dx = 210 nm, Dy = 264 nm (the smaller Dx is used to better resolve the laser
envelope), Lx = 37.0 lm, and Ly = 66.5 lm, for a grid size of Nx � Ny = 176 � 252. (The difference in Ly is due to the fact that
the number of transverse cells in each PML region is fixed at 24, while the transverse grid spacing in the envelope simulation
is larger.) For the envelope unscaled simulation, since the density for the scaled simulations is increased by a factor of 100, kp

is 10 times greater than the scaled case. The grid spacings and global domain sizes are therefore larger by that factor relative
to the scaled simulation, and the number of grid points in each dimension remain the same. This reveals the key advantage of
the envelope model: Lower densities are accessible since the longer plasma wavelength can be simulated with a proportion-
ally larger grid spacing. In addition, since the time step is proportional to the grid spacings via the Courant condition, Dt also



Fig. 10. Left: Transverse spot size of the laser pulse, measured as the full width at half maximum (FWHM) of the fluence. Right: The peak normalized laser
field intensity.
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scales as kp. Since the propagation distance scales as k3
p , the number of time steps scales as k2

p for the envelope model; since
no such time step scaling is available with explicit FDTD, the number of steps scales as k3

p for that algorithm.
We first compare the evolution of the laser pulse. We can examine the transverse profiles of the laser pulse by plotting the

fluence as a function of transverse position y and approximate propagation distance ct. This is shown in Fig. 9. From this
Figure, we first note the excellent agreement between the explicit and envelope scaled simulations, indicating that the enve-
lope update remains faithful to the laser evolution given by the Maxwell equations. We also see that in the unscaled case, the
transverse spot size oscillations in the laser profile are much more rapid. This is not surprising, since it is known that scaled
simulations do not correctly model the period of such oscillations. Because of relativistic self-focusing, the laser pulse is not
perfectly matched to the plasma channel; the plasma channel radius was modified from the linear case to compensate for
self-focusing, but the compensation was not perfect. We therefore expect some focusing of the laser pulse and a mismatched
spot size oscillation. In the low power limit, a mismatched laser pulse will oscillate in a channel with a period pxR, where
xR ¼ pw2

0=k is the matched Rayleigh length [37]. This length therefore scales with plasma density as k2
p , but the propagation

distance scales with k3
p . Scaling therefore extends the focusing length relative to scaled propagation distance, as seen in Fig. 9.

Looking more closely at the evolution of the laser pulse reveals some limitations of the unscaled envelope model while
still showing excellent agreement with explicit FDTD for scaled simulations. To examine this further, we consider the evo-
lution of the transverse spot size of the laser pulse as well as the peak field intensity. These are shown in Fig. 10. In the left
plot in the figure, we see, as in the fluence profile plot, the expected more rapid oscillations in the unscaled case, while the
envelope and explicit scaled simulations agree quite well. The same is true for the peak field intensity, until about 45 cm of
propagation. At that point the peak intensity in the unscaled simulation doubles from its original value, which oscillated
Fig. 11. Left: Total energy in the laser pulse. Right: The real part of the normalized laser amplitude envelope derived from the vector potential, given by
Re(qa/mc), at 736 mm of propagation in the unscaled envelope simulation. This shows the high-frequency oscillations developing in the envelope field.
These are unresolved by the grid, causing the unphysical behavior shown in the left plot.



Fig. 12. The energy spectrum, as a function of spatial frequency normalized to k0, of a laser pulse after 2.1 m of propagation through a plasma with density
1023 m�3. The laser pulse evolution was computed using a 1D explicit simulation.

Fig. 13. Left: The peak longitudinal wakefield. Right: The peak transverse wakefield.
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between a0 = 1.0 and a0 = 1.2. Furthermore, this increase is not simply due to self-focusing, as it is not accompanied by a sim-
ilar reduction in transverse spot size. The unphysical nature of this evolution is clearly shown in the left plot of Fig. 11. We
see that unlike in the scaled case, in the unscaled envelope simulation, the total laser energy actually starts to increase after
about 45 cm of propagation. There is no physical mechanism which should cause this. Instead, the unphysical evolution can
be traced to lack of resolution of the laser envelope field. In the right plot of Fig. 11, the real part of the normalized vector
potential laser envelope, namely Re(qa/mc), is plotted for the unscaled envelope simulation at 736 mm of propagation. We
can see that fast oscillations in the envelope have developed; given that there are only 175 grid points longitudinally, these
oscillations are not well resolved.

This under-resolution of the envelope fields is caused by a shift in the spectrum of the laser pulse. By using the envelope
field as defined in Eq. (51) along with a coarse grid, we have assumed that the longitudinal spatial frequency spectrum, as well
as the temporal spectrum, occupies a narrow band around k0. While this assumption holds early on in the pulse propagation,
redshifting caused by laser depletion broadens the spectrum beyond what is resolved on the grid. Theory and simulations [41]
show that the mean pulse frequency scales with the characteristic laser depletion length Lpd. Thus dx/dx �x0/Lpd, where the
total laser pulse energy U also evolves as dU/dx � U0/Lpd. Here x0 and U0 are the initial laser central frequency and pulse en-
ergy, respectively. Simply put, significant frequency shifts Dx �x0 occur after a depletion length. For a0 � 1, Lpd � k3

p=k
2 � Ld,

so we expect a significant frequency shift to occur within a single stage. A given longitudinal grid spacing Dx allows a resolved
bandwidth proportional to Dx�1. Therefore this problem is more severe for the unscaled case than the scaled case, since Dx/kp

is held constant, and hence Dx/k0 is larger, resulting in a narrower bandwidth limit. We can see this dramatically in Fig. 12, in
which the spectrum of a laser pulse after long distance propagation, modeled in a 1D explicit simulation, is plotted. We can



Fig. 14. Fluence profiles of the laser pulse from the 3D simulation. The fluence is integrated in z (top) and y (bottom), to give the fluence dependence on y
and z, respectively. The units are J/m.
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demonstrate this phenomenon of insufficient longitudinal resolution directly, by running the unscaled envelope simulation
with twice the longitudinal resolution, using Dx = 105 lm. This is shown in the light blue1 curve in the left plot of Fig. 11. We
can see that the unphysical growth in laser energy is delayed and much less pronounced, consistent with the hypothesis that
longitudinal under-resolution causes the unphysical behavior. While the longitudinal resolution could be increased to better cap-
ture these depletion effects, the envelope model derives its speedup over explicit PIC primarily from lower longitudinal resolu-
tion. The user therefore has a trade-off between speed and resolution of depletion effects. We can quantify this trade-off by
noting that the simulation with doubled resolution runs 67% longer (0.75 m vs. 0.45 m) before the total laser energy starts to
increase. This comes at a cost of a factor of 3.9 in speed in these simulations.

Finally, we compare the wakefields for the three types of simulations. The peak longitudinal and transverse wakefield val-
ues are plotted in Fig. 13. Again we see good agreement between the two scaled simulations. Direct comparison of the un-
scaled envelope simulation with explicit FDTD is not possible because of the extraordinary computational requirements of
an explicit simulation with those parameters. However, we can see that wakefield results in the unscaled case are physically
reasonable. Despite the unphysical behavior in the laser envelope documented above, the wakefield values in the unscaled
simulation do not deviate by more than �10% from either the values in the scaled simulations or the values early on in the
unscaled simulation, averaging over the self-focusing oscillations. As noted above, the self-focusing oscillations themselves
behave reasonably. Since the particle beam responds to the wakefields, and not directly to the laser, this, together with the
good agreement in the scaled case, provides some confidence that a full-scale simulation with the envelope model which
includes an accelerated bunch will produce reasonably accurate values for the particle beam parameters, even late in the
simulation. In the future, we expect to benchmark the envelope model in this unscaled case against other advanced tech-
niques for performing this simulation, such as the boosted-frame methods, as those techniques develop further.

Now that a comparison of the physical parameters is complete, we describe the relative speed of the envelope model. To
do so, 2D simulations are run with both explicit FDTD and the envelope model for identical physical parameters relevant for
a meter-scale LWFA stage. Specifically, the physical parameters used are the same as those used in the unscaled case of the
scaled/unscaled comparison described above. For the explicit simulation, grid spacings of Dx = k/32 and Dy = k/3 are used,
yielding a grid size of 10083 � 2028. For the envelope model, grid spacings of kp/32 in each direction are used, which give
a grid size of 77 � 194. Third-order particles are used in each case, and each simulation is run for 100 time steps with the
global domain completely filled with plasma particles. The explicit simulation completes the 100 steps in 17.7 s on 320 cores,
1 For interpretation of color in Figs. 1-14, the reader is referred to the web version of this article.
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and the envelope model in 5.33 s on 2 cores, in both cases on the Franklin supercomputer at NERSC. The time step is
8.26 � 10�17 s for the explicit simulation and 7.74 � 10�15 s for the envelope model, so the envelope model requires fewer
time steps than explicit PIC for the same propagation distance. These results yield a speedup factor of 5.0 � 104 of the enve-
lope model over explicit FDTD. We can estimate the speedup factor in 3D by multiplying the 2D result by the ratio of explicit
to envelope Nz = Ny, giving an estimated speedup of 5.2 � 105.

A full meter-scale envelope simulation was run in 3D, with parameters identical to the unscaled 2D case described above.
The run required 10 days on 144 cores; because of the small grid size, running with greater parallelization resulted in dimin-
ishing returns on runtime, so it is unlikely that meter-scale, 3D simulations can be completed with envelope model in less
than several days of runtime. Still, such a simulation only requires a moderate-size cluster rather than a supercomputer, and
represents a vast improvement over explicit FDTD, for which the simulation would be entirely intractable. One could use
greater parallelization to increase the longitudinal resolution, delaying the onset of unresolved laser oscillations. This allows
3D simulations of next-generation experiments on current computers. Fluence profiles of the 3D laser pulse in each trans-
verse direction are shown in Fig. 14.

5. Conclusion

We have described in detail the implementation of a reduced model for laser–plasma accelerator simulations. This imple-
mentation includes a new ponderomotive particle push algorithm, which was shown, as implemented, to exhibit at least
second-order convergence, with accuracy equal to or better than explicit PIC even with much lower resolution. The envelope
model also reproduces the theoretical laser group velocity in a plasma channel—a critical parameter for simulations of LPA
stages—much more faithfully than explicit PIC. At the same time, the envelope model does not suffer from numerical kinetic
effects significant enough to cause unphysical trapping in typical LPA simulations.

Detailed comparisons were performed among scaled explicit, scaled envelope, and unscaled envelope simulations. We
found excellent agreement between the scaled simulation, and good agreement of the wake field strength between the scaled
and unscaled simulations, given the physical difference in self-focusing oscillations. We measured a speedup factor of 50,000
over explicit PIC in 2D for parameters relevant to a meter-scale LPA stage, yielding an estimated speedup factor of over
500,000 for 3D simulations. The limitation of the envelope model is in its ability to resolve the spectral broadening that occurs
after long propagation distances while maintaining this low computational cost. Still, our investigations have shown that the
laser envelope model provides a tool capable of performing full 3D simulations of meter-scale LPA stages. It is complementary
to, and can provide benchmarks for, other models under development such as the boosted-frame method. These tools will
take on ever-increasing importance as longer LPA stages are explored on a path to a high-energy collider.
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Appendix A. Theoretical background

In this appendix we derive the key theoretical results enabling the envelope model, namely Eqs. (4)–(6) and (13). While
none of these results are original (see the references for previous derivations), we provide a rigorous treatment here which
may be clearer in the context of the envelope algorithm.

A.1. Relativistic ponderomotive force

As described in Section 2.1, the response of the particles to the laser field is described by the ponderomotive force. Such
motion can be solved exactly in the case of a plane wave whose amplitude depends only on x � ct, using the Hamilton prin-
cipal function [42] or the cold fluid equations [3,43]. In the case of a laser pulse whose amplitude can vary slowly in all space-
time dimensions, the ponderomotive force has been derived by introducing derivatives over fast and slow space and time
scales into the equations of motion [23,44]. Other derivations have used a Lagrangian technique [45] and Newtonian pertur-
bation theory [46]. Here we derive the ponderomotive force from Hamiltonian perturbation theory.
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A.1.1. Electromagnetic Hamiltonian in the speed-of-light frame
The first step in deriving the relativistic ponderomotive force is to transform to a Galilean frame co-propagating with the

laser field at the speed of light. This will serve to make the Hamiltonian time-independent in the case of a plane wave. We
begin with the relativistic Hamiltonian for a particle in an electromagnetic field:
H ¼ cðjP� qAj2 þm2c2Þ1=2 þ qU: ð30Þ
Here P is the canonical momentum given by P = p + qA, where p is the particle’s physical momentum. To transform to the
speed-of-light frame we use a canonical transformation generated by the function
Fðx;P0; tÞ ¼ ðx� ctÞP0x þ x? � P0?: ð31Þ
This transformation gives
P ¼ @F
@x
¼ P0; x0 ¼ @F

@P0
¼ x̂ðx� ctÞ þ x?; ð32Þ
i.e. all coordinates remain unchanged except for the x coordinate; we denote the new x coordinate by n = x � ct. The trans-
formed Hamiltonian is then given by [47]
H0 ¼ H þ @F
@t
¼ cðjP� qAj2 þm2c2Þ1=2 � cPx þ qU: ð33Þ
We now have a coordinate transformation (t,x) ´ (s,n), with s = t. The inverse transformation is given by t = s, x = n + cs.
Partial derivatives then transform in the following way:
@

@s
¼ @t
@s

@

@t
þ @x
@s

@

@x
¼ @

@t
þ c

@

@x
;

@

@n
¼ @t
@n

@

@t
þ @x
@n

@

@x
¼ @

@x
; ð34Þ

@

@t
¼ @s
@t

@

@s
þ @n
@t

@

@n
¼ @

@s
� c

@

@n
;

@

@x
¼ @s
@x

@

@s
þ @n
@x

@

@n
¼ @

@n
: ð35Þ
A.1.2. Change of independent variable
We will be examining a case where the vector potential experiences fast oscillations in the n coordinate, so it will be use-

ful to have use n, rather than s, as the independent variable in the Hamiltonian formalism. Converting between derivatives
with respect to s and those with respect to n is straightforward, since causality requires dn/ds < 0 everywhere. To perform the
transformation, we will use Px as the Hamiltonian quantity, so we first need to express Px in terms of H0, the phase space
coordinates, and s. We have that
ðH0 þ cPx � qUÞ2 ¼ c2ðjP� qAj2 þm2c2Þ; ð36Þ
which gives
jP? � qA?j2 þm2c2 ¼ H0

c
þ Px � q

U
c

� �2

� ðPx � qAxÞ
2 ¼ H0

c
þ 2Px � q

U
c
� qAx

� �
H0

c
� q

U
c
þ qAx

� �
: ð37Þ
Then
H0

c
þ 2Px � q

U
c
� qAx ¼

jP? � qA?j2 þm2c2

H0=c � qU=c þ qAx
; ð38Þ
so we have
Px ¼
1
2
jP? � qA?j2 þm2c2

H0=c � qU=c þ qAx
� H0

c
þ q

U
c
þ qAx

 !
: ð39Þ
To find the Hamilton equations for this system, we need to compute the partial derivatives of Px. We let w be one of the
variables P\, n, x\, or s—that is, any phase space or independent variable other than H0 and Px. Holding fixed the other vari-
ables listed above, we define a function f : R2 ! R2 by
f ðPx;wÞ ¼ ðH0ðPx;w; . . .Þ;wÞ: ð40Þ
Its Jacobian derivative is
Df ¼ @H0=@Px @H0=@w

0 1

� �
; ð41Þ
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so the Jacobian of its inverse is given by
Dðf�1Þ ¼ @Px=@H0 @Px=@w

0 1

� �
¼ @H0=@Px @H0=@w

0 1

� ��1

¼ 1
@H0=@Px

1 �@H0=@w

0 @H0=@Px

� �
: ð42Þ
This general relation yields
@Px

@H0
¼ 1
@H0=@Px

¼ 1
dn=ds

¼ ds
dn
; ð43Þ
and for w,
@Px

@w
¼ � @H0=@w

@H0=@Px
¼ ds

dn
� @H0

@w

� �
: ð44Þ
Then we have
@Px

@P?
¼ ds

dn
� @H0

@P?

� �
¼ ds

dn
� dx?

ds

� �
¼ �dx?

dn
; ð45Þ

@Px

@s
¼ ds

dn
� @H0

@s

� �
¼ ds

dn
� dH0

ds

� �
¼ � dH0

dn
; ð46Þ

@Px

@x?
¼ ds

dn
� @H0

@x?

� �
¼ ds

dn
dP?
ds
¼ dP?

dn
: ð47Þ
Together these relations show that �Px is a Hamiltonian function of the phase space conjugate variable pairs (�s,H0), (y,Py),
and (z,Pz). It follows that dPx/dn = @Px/@n. To summarize, then, we have as our Hamiltonian equations
ds
dn
¼ @Px

@H0
;

dx?
dn
¼ � @Px

@P?
; ð48Þ

dH0

dn
¼ � @Px

@s
;

dP
dn
¼ @Px

@x0
: ð49Þ
Note that the second of the equations in (49) is extended to include the longitudinal component as well as the transverse
components.

A.1.3. Exact solution for a plane wave
We consider the case of a plane wave traveling in the +x direction and consisting of a fast oscillation at angular frequency

x0 modulated by a slowly-varying envelope. In the Coulomb gauge, the vector potential is transverse and U = 0. We can then

write AðxÞ ¼ Re½eAðx� ctÞeiðx0t�k0xÞ�, where k0 = x0/c. We denote this vector potential by bA; then x̂ � bA ¼ 0. In the speed-of-

light frame, this simplifies to bAðx0Þ ¼ Re½eAðnÞe�ik0n�.
The Hamiltonian in this case is
Px ¼
1
2

P? � qbA��� ���2 þm2c2

H0=c
� H0

c

0B@
1CA: ð50Þ
As this is depends only on the canonical momenta and n, not the canonical positions, the canonical momenta P\ and H0 are
constants of the motion. Thus the particle motion can be determined exactly as a function of n.

A.1.4. Perturbed motion
We now introduce the more general system: A particle in the field of a laser with fast oscillations in n modulated by a

slowly-varying envelope, together with a slowly-varying background field. Thus we let A ¼ bA þ A, where
bAðx0Þ ¼ Re eAðx0Þe�ik0n
h i

: ð51Þ
Here both eA and A are slowly varying in all spacetime coordinates; we provide a more rigorous definition of ‘‘slowly-varying”
below as we clearly define the problem.

Through our Hamiltonian formalism we can determine the equations of motion for the dynamic quantities s, x\, P, and H0

as a function of n. Each of these quantities will have spectral components in narrow bands around integer multiples of the
laser frequency k0. Our goal, then, is to determine the motion of the particles averaged over the fast laser oscillations. We
therefore define, for each dynamic variable w, its average �w over n. For numerical purposes, we will need not just averages
over n, but a set of dynamical equations which allow us to propagate the averaged phase-space coordinates of the particle
forward in time.
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To derive the averaged equations of motion, we start with the Hamiltonian for this system:
Px ¼
1
2

P? � qA? � qbA��� ���2 þm2c2

H0=c � q �U=c þ qAx

� H0

c
þ q

�U
c
þ qAx

0B@
1CA: ð52Þ
We will proceed to derive the equations of motion from this Hamiltonian, and then average in n over a range on the order of a
wavelength. The conditions we will need for the perturbation approximation, which define the term ‘‘slowly-varying,” now
become clear. We require that in any neighborhood of (n,s,x\) space which a particle trajectory can cover while n varies on
the scale of a wavelength, the variations in eA, A, and �U are small enough that they can be treated perturbatively. We will
specify these conditions precisely after we derive the equations of motion; in the meantime, we assume that they hold. Then
since P\ and H0 are constant in the unperturbed case, to leading order we can replace P\ and H0 with P? and H0, respectively,
within the equations of motion.

A.1.5. Averaged kinetic quantities
To cast quantities that will appear in the equations of motion in more familiar terms, we define averaged kinetic quan-

tities in terms of averaged canonical momenta. First, we define the averaged linear momentum by �p ¼ P� qA. We can also
define a quantity related to the average energy. We know that in terms of kinetic variables, the Hamiltonian in the lab frame
is equal to the total particle energy, that is, H = cmc2 + qU. We then have that H

0
= cmc2 + qU � cpx � qcAx. With this in mind,

we define the quantity �c such that
H0 ¼ �cmc2 þ q �U� c�px � qcAx; ð53Þ
or
H0

c
� q

�U
c
þ qAx ¼ �cmc � �px: ð54Þ
We can obtain a more intuitive expression for c by determining a relationship between �p and H0. To do so we take the aver-
age of Px. Denoting averages over n by h i, and applying the perturbation approximation that allows us to replace canonical
momenta with their averages, we have to leading order
Px ¼
1
2

P? � qA? � qbA��� ���2 þm2c2

H0=c � q �U=c þ qAx

� H0

c
þ q

�U
c
þ qAx

* +
: ð55Þ
Then
�px ¼ Px � qAx ¼
1
2

j�p? � qbAj2D E
þm2c2

�cmc � �px
� H0

c
þ q

�U
c
� qAx

0@ 1A ¼ 1
2

�p?j j2 þ q2 eA��� ���2=2þm2c2

�cmc � �px
� ð�cmc � �pxÞ

264
375; ð56Þ
so
2�pxð�cmc � �pxÞ ¼ �p?j j2 þ
q2 eA��� ���2

2
þm2c2 � ð�cmc � �pxÞ2; ð57Þ

2�cmc�px � 2�p2
x ¼ �p?j j2 þ

q2 eA��� ���2
2
þm2c2 � ð�cmcÞ2 þ 2�cmc�px � �p2

x ; ð58Þ
and thus
ð�cmcÞ2 ¼ �p?j j2 þ
q2 eA��� ���2

2
þm2c2 þ �p2

x ¼ j�pj
2 þ q2jeAj2

2
þm2c2: ð59Þ
Therefore �c can be considered an averaged Lorentz factor for the particle, taking into account both the average momentum
and the quiver energy.

A.1.6. Equations of motion
We can now derive the equations of motion averaged over the fast laser oscillations. We begin with s. We have
ds
dn
¼ @Px

@H0
¼ 1

2
�

P? � qA? � qbA��� ���2 þm2c2

ðH0=c � q �U=c þ qAxÞ2
� 1

c
� 1

c

264
375: ð60Þ
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Applying the perturbation approximation and taking the average over n, we have
d�s
dn
¼� 1

2c

�p?j j2þq2 eA��� ���2=2þm2c2

ð�cmc� �pxÞ2
þ1

264
375¼� 1

2c
ð�cmcÞ2� �p2

x

ð�cmc� �pxÞ2
þ1

" #
¼� 1

2c
�cmcþ �px

�cmc� �px
þ1

� �
¼� 1

2c
� 2�cmc
�cmc� �px

¼�
�cm

�cmc� �px
:

ð61Þ

This equation of motion points a way around our problem of obtaining averaged time derivatives, when most of our expres-
sions are written in terms of, and can only be easily averaged over, n. We know that �s is monotonic in n, since Eq. (59) shows
that d�s=dn < 0 everywhere. Thus we have, in �s, a function which is monotonically increasing with s (since dn/ds < 0 every-
where), and which is slowly-varying with respect to n. The solution is therefore to express our equations of motion in terms
of derivatives with respect to �s rather than s. We can easily obtain such equations by multiplying our expressions for deriv-
atives with respect to n, obtained from the Hamilton equations, by
dn
d�s
¼ �

�cmc � �px

�cm
: ð62Þ
We can immediately obtain an averaged equation of motion for the x coordinate. Defining �x ¼ nþ c�s, we have
d�x
d�s
¼ dn

d�s
þ c ¼

�px

�cm
: ð63Þ
The equations for the transverse position variables are also easily obtained. From Eq. (48), we have
dx?
dn
¼ � @Px

@P?
¼ �1

2
2ðP? � qA? � qbAÞ
H0=c � q �U=c þ qAx

" #
; ð64Þ
so that
d�x?
dn
¼ �

�p?
�cmc � �px

: ð65Þ
This gives
d�x?
d�s
¼

�p?
�cm

; ð66Þ
so that we can define in general
�v ¼ d�x
d�s
¼

�p
�cm

: ð67Þ
For the momentum variables, we have from Eq. (49) that
dPi

dn
¼ @Px

@x0i
¼ 1

2
2ðP? � qA? � qbAÞ
H0=c� q �U=cþ qAx

� �q
@bA
@x0i
� q

@A?
@x0i

 !"
�

P? � qA? � qbA��� ���2 þm2c2

ðH0=c� q �U=cþ qAxÞ2
�q

c
@ �U
@x0i
þ q

@Ax

@x0i

 !
þ q

c
@ �U
@x0i
þ q

@Ax

@x0i

375;
ð68Þ
so
dPi

dn
¼ 1

2

2ðP? � qA?Þ � �q@A?=@x0i
� 	

þ q2@ jbAj2D E
=@x0i

H0=c� q �U=cþ qAx

24 �
P? � qA?
��� ���2 þ q2 eA��� ���2 þm2c2

ðH0=c� q �U=cþ qAxÞ2
�q

c
@ �U
@x0i
þ q

@Ax

@x0i

 !
þ q

c
@ �U
@x0i
þ q

@Ax

@x0i

375:
ð69Þ
This gives, in terms of kinetic variables,
dPi

dn
¼ 1

2
1

�cmc � �px
�2q�p? �

@A?
@x0i
þ q2

2
@

@x0i
eA��� ���2 !"

�ð
�cmcÞ2 � �p2

x

ð�cmc � �pxÞ2
� q

c
@ �U
@x0i
þ q

@Ax

@x0i

 !
þ q

c
@ �U
@x0i
þ q

@Ax

@x0i

#

¼ 1
2

1
�cmc � �px

�2q�p? �
@A?
@x0i
þ q2

2
@

@x0i
eA��� ���2 !"

þ
�cmc þ �px

�cmc � �px
þ 1

� �
q
c
@ �U
@x0i
�

�cmc þ �px

�cmc � �px
� 1

� �
q
@Ax

@x0i

#

¼ 1
�cmc � �px

�q�p? �
@A?
@x0i
þ q2

4
@

@x0i
eA��� ���2 þ �cmq

@ �U
@x0i
� q�px

@Ax

@x0i

 !
¼ 1

�cmc � �px
�q�p � @A

@x0i
þ q2

4
@

@x0i
eA��� ���2 þ �cmq

@ �U
@x0i

 !
:

ð70Þ
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We then have
dPi

d�s
¼ dn

d�s
dPi

dn
¼ � 1

�cm
�q�p � @A

@x0i
þ q2

4
@

@x0i
eA��� ���2 þ �cmq

@ �U
@x0i

 !
¼ q�v � @A

@x0i
� q2

4�cm
@

@x0i
eA��� ���2 � q

@ �U
@x0i

: ð71Þ
For a slowly-varying field w we can write
dw
d�s
¼ @w
@t
þ �v � $w; ð72Þ
and using the fact from Eq. (34) that @=@x0i ¼ @=@xi, we have
d�pi

d�s
þ q

@Ai

@t
þ �v � $Ai ¼ q�v � @A

@xi
� q2

4�cm
@

@xi

eA��� ���2 � q
@ �U
@xi

; ð73Þ
so that
d�pi

d�s ¼ q � @Ai

@t
� @

�U
@xi
þ �v � @A

@xi
� �v � $Ai

 !
� q2

4�cm
@

@xi

eA��� ���2: ð74Þ
Now, assuming repeated indices are summed over,
�v � @A
@xi
� �v � $Ai ¼ �v j@ iAj � �v j@jAi ¼ �v jðdildjm � dimdjlÞ@lAm ¼ �v j�ijk�lmk@lAm ¼ �ijk �v jð$� AÞk ¼ �v � ð$� AÞ

h i
i
: ð75Þ
Then
d�pi

d�s
¼ q Eþ �v � B


 �
i �

q2

4�cm
@

@xi

eA��� ���2; ð76Þ
or
d�p
d�s
¼ q Eþ �v � B


 �
� q2

4�cm
$ eA��� ���2: ð77Þ
This is the ponderomotive force with a background field.
We can check these equations by examining the motion of H

0
. From Eq. (49), we have
dH0

dn
¼�@Px

@s
¼�1

2
2ðP? �qA? �qbAÞ
H0=c�q �U=cþqAx

� �q
@ bA
@s
�q

@A?
@s

 !"
�

P? �qA? �qbA��� ���2þm2c2

ðH0=c�q �U=cþqAxÞ2
�q

c
@ �U
@s
þq

@Ax

@s

 !
þq

c
@ �U
@s
þq

@Ax

@s

375:
ð78Þ
This has the same form as Eq. (68), with x0i replaced with s and with the opposite sign. Through the same manipulations, we
then arrive at
dH0

dn
¼ 1

�cmc � �px
q�p � @A

@s
� q2

4
@

@s
eA��� ���2 � �cmq

@ �U
@s

 !
; ð79Þ
so
dH0

d�s
¼ �q�v � @A

@s
þ q2

4�cm
@

@s
eA��� ���2 þ q

@ �U
@s

: ð80Þ
Applying Eq. (34), we have
dH0

d�s
¼ �q�v � @A

@t
þ q2

4�cm
@

@t
eA��� ���2 þ q

@ �U
@t
� c q�v � @A

@x
� q2

4�cm
@

@x
eA��� ���2 � q

@ �U
@x

 !

¼ �q�v � @A
@t
þ q2

4�cm
@

@t
eA��� ���2 þ q

@ �U
@t
� c

dPx

d�s
ð81Þ
by Eq. (71). Then using the fact that H0 ¼ �cmc2 þ q �U� cPx and Eq. (72), we have
d
d�s
ð�cmc2Þ ¼ dH0

d�s
þ c

dPx

d�s
� q

d �U
d�s
¼ �q�v � @A

@t
þ q2

4�cm
@

@t
eA��� ���2 � q�v � $�U ¼ q�v � Eþ q2

4�cm
@

@t
eA��� ���2: ð82Þ
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We can check this from the equations of motion for �p. We have from Eq. (59) that
�cmc2 ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pj j2 þ

q2 eA��� ���2
2
þm2c2

vuut
; ð83Þ
so
d
d�s
ð�cmc2Þ ¼ c

2�cmc
2�p � d

�p
d�s
þ q2

2
d

d�s
eA��� ���2� �

¼ �v � q Eþ �v � B

 �

� q2

4�cm
$ eA��� ���2� �

þ q2

4�cm
@

@t
eA��� ���2 þ �v � $ eA��� ���2� �

¼ q�v � Eþ q2

4�cm
@

@t
eA��� ���2: ð84Þ
Thus the average energy evolution equation from the Hamiltonian formalism is consistent with those for the momentum.

A.1.7. The perturbative approximation
Now that we have used our perturbation approximations to derive the equations of motion, we can specify a set of con-

ditions which are sufficient for making those approximations valid. As mentioned above, we must have that the variations of
all the potentials are small enough to be treated perturbatively in a neighborhood of spacetime traversed by a particle in a
time on the order of a single oscillation. These conditions are simplified by requiring that such a neighborhood is on the order
of a wavelength in all directions, which itself yields our first condition. From Eq. (64), we have that to leading order,
dx?
dn
¼ �

�p? � qbA
�cmc � �px

: ð85Þ
For the transverse deviation of the particle over a single oscillation to be on the order of the wavelength k, this quantity must
be of order unity. We know from Eq. (59) that j�p? � qbAj 6 Oð1Þ�cmc, so we require that
�cmc
�cmc � �px

���� ���� ¼ 1
1� �vx=cj j ¼ Oð1Þ: ð86Þ
This requirement makes sense because the amplitude of the transverse oscillations of a particle are on the order of a wave-
length in the particle’s rest frame. If a particle has highly relativistic average motion in the +x direction, the optical wave-
length is dilated by c(1 + b), so the transverse oscillations are increased by that factor. Note that this requirement does
not imply that jvxj � c; it merely implies that particles cannot be moving highly relativistically in the direction of the laser.
In addition, this restriction only applies to the direct interaction between particles and the laser field, not to particles expe-
riencing only the wake. Therefore beam particles that are not in the laser field are modeled correctly. However, the envelope
model does not correctly capture the transverse dynamics of beam particles which experience strong laser fields, a phenom-
enon explored in [48].

Once we have required that a particle is confined to a spacetime region on the order of an optical wavelength in a single
oscillation cycle, our remaining requirement for the perturbation is the slowly-varying approximation on the potentials. If
we let A be �U or any component of A or eA, and letting r denote a spacetime vector, we require that on average
k
@2A
@r2

�����
������ @A

@r

���� ����: ð87Þ
In other words, as long as the ponderomotive force and the background electromagnetic fields do not change significantly on
the scale of an optical wavelength, the perturbation approximation should be valid.

A.2. Envelope evolution

We now derive the evolution of the transverse vector potential envelope itself. First, we justify a further approximation
we have made in the Hamiltonian, Eq. (52), namely, that we ignore the oscillatory part ~U of the scalar potential. To do so, we
compute ~U to lowest order, and specify the assumption necessary to make the approximation valid. In the Coulomb gauge,
we have the Poisson equation r2U = q/�0, where q is the charge density. Since we assume that the envelopes of the oscil-
latory components of the fields vary slowly relative to the optical wavelength, we have to lowest order
q
�0
¼ k2

0
~U; ð88Þ
then
~U
c
¼ q

k2
0�0c

¼ nq

k2
0�0c

; ð89Þ
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where n is the plasma number density. Now the plasma wavenumber kp is given by
k2
p ¼

nq2

m�0c2 : ð90Þ
Thus we can write
~U
c
¼ mc

q
k2

p

k2
0

: ð91Þ
We therefore assume that jeA?j � mc=q, that kp� k0, and that we are computing the envelope evolution equation to lowest
order in kp/k0. Then ~U=c is a second-order perturbation relative to eA, and we ignore it.

With this approximation, we can now derive the equation of motion for the laser pulse envelope. We use the notation bE, bB
to denote the oscillating components of the electromagnetic fields just as we do for bA. The oscillating fields are then derived
from the vector potential by
bE ¼ � @ bA
@t

; bB ¼ $� bA: ð92Þ
Starting in the lab frame, we then have
1
c2

@2 bA
@t2 ¼ �

1
c2

@bE
@t
¼ �$� bB þ l0

bJ ¼ �$� ð$� bAÞ þ l0
bJ ¼ �$ð$ � bAÞ þ r2 bA þ l0

bJ: ð93Þ
Applying the Coulomb gauge condition, we then have
1
c2

@2 bA
@t2 �r

2 bA ¼ l0
bJ: ð94Þ
We now transition to the speed-of-light frame, using Eq. (35). This gives
l0
bJ ¼ 1

c
@

@s
� @

@n

� �2

� @2

@n2 �r
2
?

" #bA ¼ 1
c2

@2

@s2 �
2
c
@

@s
@

@n
þ @2

@n2 �
@2

@n2 �r
2
?

 !bA ¼ 1
c2

@2

@s2 �
2
c
@

@s
@

@n
�r2

?

 !bA: ð95Þ
Next, we apply the relation bA ¼ ReðeAe�ik0nÞ, and a similar relation for bJ, to arrive at
1
c2

@2 eA
@s2 �

2
c
@

@s
@ eA
@n
� ik0

eA !
�r2

?
eA ¼ l0

eJ: ð96Þ
We can use the slowly-varying envelope approximation, Eq. (87), that we required as part of the perturbative treatment, to
drop the first term in this equation, to give
2
c
@

@s
@eA
@n
� ik0

eA !
þr2

?
eA ¼ �l0

eJ: ð97Þ
Finally, we establish a linear relationship between eJ and eA to self-consistently describe the evolution of eA. As the current
density due to a single particle is proportional to its velocity, we must compute the oscillatory part of the particle velocity. To
do so, we begin from the relation, derived from the light-frame Hamiltonian, used to derive the average velocity, namely Eq.
(64). Taking the oscillatory part of this relation gives, to lowest order in our perturbation approximation,
dx̂?
dn
¼ qbA

�cmc � �px
; ð98Þ
which, when combined with Eq. (62), yields
dx̂?
d�s
¼ � qbA

�cm
: ð99Þ
A particle propagating with velocity v induces current density qv, where q is the charge density associated with the particle.
The oscillatory current density from the ith particle is therefore related to the local oscillatory vector potential by
eJi ¼ �
qqi

�cim
eA; ð100Þ
and for an ensemble of plasma particles we then have
eJ ¼ �
X

i

qqi

�cim

 !eA: ð101Þ
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With this relationship we can define a susceptibility for the plasma analogous to the susceptibility of a dielectric material.
For a dielectric, we have a susceptibility v defined by P = �0vE. For a single-frequency oscillation, we then have
eJ ¼ ix0
eP ¼ ix0�0veE ¼ ix0�0vð�ix0

eAÞ ¼ x2
0�0veA ¼ k2

0c2�0veA ¼ k2
0

l0

eA: ð102Þ
We therefore define the plasma susceptibility by
v ¼ �l0

k2
0

X
i

qqi

�cim
; ð103Þ
then eJ ¼ ðk2
0=l0ÞveA, so
2
c
@

@s
@

@n
� ik0

� �
þr2

?

� �eA ¼ �k2
0veA: ð104Þ
We normalize this equation so the operators on both sides are dimensionless, and the dominant term, currently the one with
�ik0 on the LHS, becomes unity. We thus multiply both sides by i=k2

0 to obtain
2
x0

@

@s
1þ i

k0

@

@n

� �
þ i

k2
0

r2
?

" #eA ¼ �iveA: ð105Þ
This describes the time-evolution of the laser envelope field.
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